BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20946808)

  • 41. Basis of specificity for a conserved and promiscuous chromatin remodeling protein.
    Donovan DA; Crandall JG; Truong VN; Vaaler AL; Bailey TB; Dinwiddie D; Banks OG; McKnight LE; McKnight JN
    Elife; 2021 Feb; 10():. PubMed ID: 33576335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleosome positions predicted through comparative genomics.
    Ioshikhes IP; Albert I; Zanton SJ; Pugh BF
    Nat Genet; 2006 Oct; 38(10):1210-5. PubMed ID: 16964265
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome.
    Mavrich TN; Ioshikhes IP; Venters BJ; Jiang C; Tomsho LP; Qi J; Schuster SC; Albert I; Pugh BF
    Genome Res; 2008 Jul; 18(7):1073-83. PubMed ID: 18550805
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites.
    Möbius W; Gerland U
    PLoS Comput Biol; 2010 Aug; 6(8):. PubMed ID: 20808881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Experiments confirm the influence of genome long-range correlations on nucleosome positioning.
    Vaillant C; Audit B; Arneodo A
    Phys Rev Lett; 2007 Nov; 99(21):218103. PubMed ID: 18233262
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Artificial nucleosome positioning sequences tested in yeast minichromosomes: a strong rotational setting is not sufficient to position nucleosomes in vivo.
    Tanaka S; Zatchej M; Thoma F
    EMBO J; 1992 Mar; 11(3):1187-93. PubMed ID: 1547779
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Asymmetric positioning of nucleosomes and directional establishment of transcriptionally silent chromatin by Saccharomyces cerevisiae silencers.
    Zou Y; Yu Q; Bi X
    Mol Cell Biol; 2006 Oct; 26(20):7806-19. PubMed ID: 16908533
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae.
    Lantermann AB; Straub T; Strålfors A; Yuan GC; Ekwall K; Korber P
    Nat Struct Mol Biol; 2010 Feb; 17(2):251-7. PubMed ID: 20118936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.
    Quintales L; Soriano I; Vázquez E; Segurado M; Antequera F
    Open Biol; 2015 Apr; 5(4):140218. PubMed ID: 25854683
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The genome folding mechanism in yeast.
    Kimura H; Shimooka Y; Nishikawa J; Miura O; Sugiyama S; Yamada S; Ohyama T
    J Biochem; 2013 Aug; 154(2):137-47. PubMed ID: 23620598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Prediction of nucleosome positioning based on transcription factor binding sites.
    Yi X; Cai YD; He Z; Cui W; Kong X
    PLoS One; 2010 Sep; 5(9):. PubMed ID: 20824131
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A unified computational framework for modeling genome-wide nucleosome landscape.
    Jin H; Finnegan AI; Song JS
    Phys Biol; 2018 Sep; 15(6):066011. PubMed ID: 30113318
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-wide role of Rad26 in promoting transcription-coupled nucleotide excision repair in yeast chromatin.
    Duan M; Selvam K; Wyrick JJ; Mao P
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18608-18616. PubMed ID: 32690696
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A statistical thermodynamic approach for predicting the sequence-dependent nucleosome positioning along genomes.
    Scipioni A; Morosetti S; De Santis P
    Biopolymers; 2009 Dec; 91(12):1143-53. PubMed ID: 19598227
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Yeast Minichromosome System Consisting of Highly Positioned Nucleosomes in Vivo.
    Fuse T; Yanagida A; Shimizu M
    Biol Pharm Bull; 2019 Feb; 42(2):289-294. PubMed ID: 30531092
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.
    Zawadzki KA; Morozov AV; Broach JR
    Mol Biol Cell; 2009 Aug; 20(15):3503-13. PubMed ID: 19494041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A nucleosomal surface defines an integration hotspot for the Saccharomyces cerevisiae Ty1 retrotransposon.
    Baller JA; Gao J; Stamenova R; Curcio MJ; Voytas DF
    Genome Res; 2012 Apr; 22(4):704-13. PubMed ID: 22219511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome information processing by the INO80 chromatin remodeler positions nucleosomes.
    Oberbeckmann E; Krietenstein N; Niebauer V; Wang Y; Schall K; Moldt M; Straub T; Rohs R; Hopfner KP; Korber P; Eustermann S
    Nat Commun; 2021 May; 12(1):3231. PubMed ID: 34050142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleosome positioning and spacing: from genome-wide maps to single arrays.
    Baldi S
    Essays Biochem; 2019 Apr; 63(1):5-14. PubMed ID: 31015380
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast.
    Sperling AS; Jeong KS; Kitada T; Grunstein M
    Proc Natl Acad Sci U S A; 2011 Aug; 108(31):12693-8. PubMed ID: 21771901
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.