These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20946854)
1. Genetic and biochemical analysis of the SLN1 pathway in Saccharomyces cerevisiae. Fassler JS; West AH Methods Enzymol; 2010; 471():291-317. PubMed ID: 20946854 [TBL] [Abstract][Full Text] [Related]
2. Kinetic studies of the yeast His-Asp phosphorelay signaling pathway. Kaserer AO; Andi B; Cook PF; West AH Methods Enzymol; 2010; 471():59-75. PubMed ID: 20946842 [TBL] [Abstract][Full Text] [Related]
3. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. Li S; Ault A; Malone CL; Raitt D; Dean S; Johnston LH; Deschenes RJ; Fassler JS EMBO J; 1998 Dec; 17(23):6952-62. PubMed ID: 9843501 [TBL] [Abstract][Full Text] [Related]
4. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Lu JM; Deschenes RJ; Fassler JS Eukaryot Cell; 2003 Dec; 2(6):1304-14. PubMed ID: 14665464 [TBL] [Abstract][Full Text] [Related]
5. Altered phosphotransfer in an activated mutant of the Saccharomyces cerevisiae two-component osmosensor Sln1p. Ault AD; Fassler JS; Deschenes RJ Eukaryot Cell; 2002 Apr; 1(2):174-80. PubMed ID: 12455952 [TBL] [Abstract][Full Text] [Related]
6. Phosphorelay signaling in yeast in response to changes in osmolarity. Santos JL; Shiozaki K Sci STKE; 2004 Dec; 2004(262):tr12. PubMed ID: 15585692 [TBL] [Abstract][Full Text] [Related]
7. Robust network structure of the Sln1-Ypd1-Ssk1 three-component phospho-relay prevents unintended activation of the HOG MAPK pathway in Saccharomyces cerevisiae. Dexter JP; Xu P; Gunawardena J; McClean MN BMC Syst Biol; 2015 Mar; 9():17. PubMed ID: 25888817 [TBL] [Abstract][Full Text] [Related]
8. Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Kaserer AO; Andi B; Cook PF; West AH Biochemistry; 2009 Aug; 48(33):8044-50. PubMed ID: 19618914 [TBL] [Abstract][Full Text] [Related]
9. Two-component histidine phosphotransfer protein Ypd1 is not essential for viability in Candida albicans. Mavrianos J; Desai C; Chauhan N Eukaryot Cell; 2014 Apr; 13(4):452-60. PubMed ID: 24489039 [TBL] [Abstract][Full Text] [Related]
10. The phosphorelay signal transduction system in Candida glabrata: an in silico analysis. Carapia-Minero N; Castelán-Vega JA; Pérez NO; Rodríguez-Tovar AV J Mol Model; 2017 Dec; 24(1):13. PubMed ID: 29248994 [TBL] [Abstract][Full Text] [Related]
11. Role of the highly conserved G68 residue in the yeast phosphorelay protein Ypd1: implications for interactions between histidine phosphotransfer (HPt) and response regulator proteins. Kennedy EN; Hebdon SD; Menon SK; Foster CA; Copeland DM; Xu Q; Janiak-Spens F; West AH BMC Biochem; 2019 Jan; 20(1):1. PubMed ID: 30665347 [TBL] [Abstract][Full Text] [Related]
12. A yeast protein similar to bacterial two-component regulators. Ota IM; Varshavsky A Science; 1993 Oct; 262(5133):566-9. PubMed ID: 8211183 [TBL] [Abstract][Full Text] [Related]
13. Interaction Dynamics Determine Signaling and Output Pathway Responses. Stojanovski K; Ferrar T; Benisty H; Uschner F; Delgado J; Jimenez J; Solé C; de Nadal E; Klipp E; Posas F; Serrano L; Kiel C Cell Rep; 2017 Apr; 19(1):136-149. PubMed ID: 28380353 [TBL] [Abstract][Full Text] [Related]
14. Role for the Ran binding protein, Mog1p, in Saccharomyces cerevisiae SLN1-SKN7 signal transduction. Lu JM; Deschenes RJ; Fassler JS Eukaryot Cell; 2004 Dec; 3(6):1544-56. PubMed ID: 15590828 [TBL] [Abstract][Full Text] [Related]
15. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. Fassler JS; West AH Eukaryot Cell; 2013 Aug; 12(8):1052-60. PubMed ID: 23771905 [TBL] [Abstract][Full Text] [Related]
16. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 "two-component" osmosensor. Posas F; Wurgler-Murphy SM; Maeda T; Witten EA; Thai TC; Saito H Cell; 1996 Sep; 86(6):865-75. PubMed ID: 8808622 [TBL] [Abstract][Full Text] [Related]
17. Insights revealed by the co-crystal structure of the Saccharomyces cerevisiae histidine phosphotransfer protein Ypd1 and the receiver domain of its downstream response regulator Ssk1. Branscum KM; Menon SK; Foster CA; West AH Protein Sci; 2019 Dec; 28(12):2099-2111. PubMed ID: 31642125 [TBL] [Abstract][Full Text] [Related]
18. Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae. Song HK; Lee JY; Lee MG; Moon J; Min K; Yang JK; Suh SW J Mol Biol; 1999 Nov; 293(4):753-61. PubMed ID: 10543964 [TBL] [Abstract][Full Text] [Related]
19. Use of restrained molecular dynamics to predict the conformations of phosphorylated receiver domains in two-component signaling systems. Foster CA; West AH Proteins; 2017 Jan; 85(1):155-176. PubMed ID: 27802580 [TBL] [Abstract][Full Text] [Related]
20. Kinetic analysis of YPD1-dependent phosphotransfer reactions in the yeast osmoregulatory phosphorelay system. Janiak-Spens F; Cook PF; West AH Biochemistry; 2005 Jan; 44(1):377-86. PubMed ID: 15628880 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]