These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 20946866)
1. Discontinuous pH gradient-mediated separation of TiO2-enriched phosphopeptides. Park SS; Maudsley S Anal Biochem; 2011 Feb; 409(1):81-8. PubMed ID: 20946866 [TBL] [Abstract][Full Text] [Related]
2. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Aryal UK; Ross AR Rapid Commun Mass Spectrom; 2010 Jan; 24(2):219-31. PubMed ID: 20014058 [TBL] [Abstract][Full Text] [Related]
3. Enrichment and separation of mono- and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis. Thingholm TE; Jensen ON; Larsen MR Methods Mol Biol; 2009; 527():67-78, xi. PubMed ID: 19241006 [TBL] [Abstract][Full Text] [Related]
4. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides. Thingholm TE; Larsen MR Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924 [TBL] [Abstract][Full Text] [Related]
5. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Kweon HK; Håkansson K Anal Chem; 2006 Mar; 78(6):1743-9. PubMed ID: 16536406 [TBL] [Abstract][Full Text] [Related]
6. Improved enrichment strategies for phosphorylated peptides on titanium dioxide using methyl esterification and pH gradient elution. Simon ES; Young M; Chan A; Bao ZQ; Andrews PC Anal Biochem; 2008 Jun; 377(2):234-42. PubMed ID: 18396144 [TBL] [Abstract][Full Text] [Related]
7. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono- and multi-phosphorylated peptides in phosphoproteome analysis. Mamone G; Picariello G; Ferranti P; Addeo F Proteomics; 2010 Feb; 10(3):380-93. PubMed ID: 19953538 [TBL] [Abstract][Full Text] [Related]
8. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
9. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides. Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456 [TBL] [Abstract][Full Text] [Related]
10. Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Zhou H; Low TY; Hennrich ML; van der Toorn H; Schwend T; Zou H; Mohammed S; Heck AJ Mol Cell Proteomics; 2011 Oct; 10(10):M110.006452. PubMed ID: 21715320 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive profiling of phosphopeptides based on anion exchange followed by flow-through enrichment with titanium dioxide (AFET). Nie S; Dai J; Ning ZB; Cao XJ; Sheng QH; Zeng R J Proteome Res; 2010 Sep; 9(9):4585-94. PubMed ID: 20681634 [TBL] [Abstract][Full Text] [Related]
12. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides. Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815 [TBL] [Abstract][Full Text] [Related]
13. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Thingholm TE; Jensen ON; Robinson PJ; Larsen MR Mol Cell Proteomics; 2008 Apr; 7(4):661-71. PubMed ID: 18039691 [TBL] [Abstract][Full Text] [Related]
14. An immobilized titanium (IV) ion affinity chromatography adsorbent for solid phase extraction of phosphopeptides for phosphoproteome analysis. Yao Y; Dong J; Dong M; Liu F; Wang Y; Mao J; Ye M; Zou H J Chromatogr A; 2017 May; 1498():22-28. PubMed ID: 28347515 [TBL] [Abstract][Full Text] [Related]
16. [Application of aspartic acid as a non-specific binding inhibitor in the enrichment of phosphopeptides with titanium dioxide]. Chi M; Bi W; Lu Z; Song L; Jia W; Zhang Y; Qian X; Cai Y Se Pu; 2010 Feb; 28(2):152-7. PubMed ID: 20556953 [TBL] [Abstract][Full Text] [Related]
17. EJMS protocol: systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based phosphopeptide stability estimations? Eickner T; Mikkat S; Lorenz P; Sklorz M; Zimmermann R; Thiesen HJ; Glocker MO Eur J Mass Spectrom (Chichester); 2011; 17(5):507-23. PubMed ID: 22173543 [TBL] [Abstract][Full Text] [Related]
18. Comparing multistep immobilized metal affinity chromatography and multistep TiO2 methods for phosphopeptide enrichment. Yue X; Schunter A; Hummon AB Anal Chem; 2015 Sep; 87(17):8837-44. PubMed ID: 26237447 [TBL] [Abstract][Full Text] [Related]
19. Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis. Ondrej M; Rehulka P; Rehulkova H; Kupcik R; Tichy A Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32492839 [TBL] [Abstract][Full Text] [Related]
20. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry. Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]