BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 20947019)

  • 21. Phylogenomic analysis of the Giardia intestinalis transcarboxylase reveals multiple instances of domain fusion and fission in the evolution of biotin-dependent enzymes.
    Jordan IK; Henze K; Fedorova ND; Koonin EV; Galperin MY
    J Mol Microbiol Biotechnol; 2003; 5(3):172-89. PubMed ID: 12766347
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation and inhibition of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; Menefee AL; Jitrapakdee S; Wallace JC; Attwood PV; St Maurice M; Cleland WW
    Biochemistry; 2011 Nov; 50(45):9694-707. PubMed ID: 21958066
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conformational Selection Governs Carrier Domain Positioning in
    Hakala JH; Laseke AJ; Koza AL; St Maurice M
    Biochemistry; 2022 Sep; 61(17):1824-1835. PubMed ID: 35943735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex formation and regulation of Escherichia coli acetyl-CoA carboxylase.
    Broussard TC; Price AE; Laborde SM; Waldrop GL
    Biochemistry; 2013 May; 52(19):3346-57. PubMed ID: 23594205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conserved Glu40 and Glu433 of the biotin carboxylase domain of yeast pyruvate carboxylase I isoenzyme are essential for the association of tetramers.
    Jitrapakdee S; Surinya KH; Adina-Zada A; Polyak SW; Stojkoski C; Smyth R; Booker GW; Cleland WW; Attwood PV; Wallace JC
    Int J Biochem Cell Biol; 2007; 39(11):2120-34. PubMed ID: 17659996
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural insights on pathogenic effects of novel mutations causing pyruvate carboxylase deficiency.
    Monnot S; Serre V; Chadefaux-Vekemans B; Aupetit J; Romano S; De Lonlay P; Rival JM; Munnich A; Steffann J; Bonnefont JP
    Hum Mutat; 2009 May; 30(5):734-40. PubMed ID: 19306334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure, mechanism and regulation of pyruvate carboxylase.
    Jitrapakdee S; St Maurice M; Rayment I; Cleland WW; Wallace JC; Attwood PV
    Biochem J; 2008 Aug; 413(3):369-87. PubMed ID: 18613815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the catalytic roles of Arg548 and Gln552 in the carboxyl transferase domain of the Rhizobium etli pyruvate carboxylase by site-directed mutagenesis.
    Duangpan S; Jitrapakdee S; Adina-Zada A; Byrne L; Zeczycki TN; St Maurice M; Cleland WW; Wallace JC; Attwood PV
    Biochemistry; 2010 Apr; 49(15):3296-304. PubMed ID: 20230056
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural evidence for substrate-induced synergism and half-sites reactivity in biotin carboxylase.
    Mochalkin I; Miller JR; Evdokimov A; Lightle S; Yan C; Stover CK; Waldrop GL
    Protein Sci; 2008 Oct; 17(10):1706-18. PubMed ID: 18725455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of the 500-kDa yeast acetyl-CoA carboxylase holoenzyme dimer.
    Wei J; Tong L
    Nature; 2015 Oct; 526(7575):723-7. PubMed ID: 26458104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural ordering of disordered ligand-binding loops of biotin protein ligase into active conformations as a consequence of dehydration.
    Gupta V; Gupta RK; Khare G; Salunke DM; Surolia A; Tyagi AK
    PLoS One; 2010 Feb; 5(2):e9222. PubMed ID: 20169168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The biotin enzyme family: conserved structural motifs and domain rearrangements.
    Jitrapakdee S; Wallace JC
    Curr Protein Pept Sci; 2003 Jun; 4(3):217-29. PubMed ID: 12769720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.
    Broussard TC; Pakhomova S; Neau DB; Bonnot R; Waldrop GL
    Biochemistry; 2015 Jun; 54(24):3860-70. PubMed ID: 26020841
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionally diverse biotin-dependent enzymes with oxaloacetate decarboxylase activity.
    Lietzan AD; St Maurice M
    Arch Biochem Biophys; 2014 Feb; 544():75-86. PubMed ID: 24184447
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biochemical, molecular, and phylogenetic analysis of pyruvate carboxylase in the yellow fever mosquito, Aedes aegypti.
    Tu Z; Hagedorn HH
    Insect Biochem Mol Biol; 1997 Feb; 27(2):133-47. PubMed ID: 9066123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme.
    St Maurice M; Reinhardt L; Surinya KH; Attwood PV; Wallace JC; Cleland WW; Rayment I
    Science; 2007 Aug; 317(5841):1076-9. PubMed ID: 17717183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structure of the biotin carboxylase subunit of pyruvate carboxylase from Aquifex aeolicus at 2.2 A resolution.
    Kondo S; Nakajima Y; Sugio S; Yong-Biao J; Sueda S; Kondo H
    Acta Crystallogr D Biol Crystallogr; 2004 Mar; 60(Pt 3):486-92. PubMed ID: 14993673
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Construction of new forms of pyruvate carboxylase to assess the allosteric regulation by acetyl-CoA.
    Islam MN; Sueda S; Kondo H
    Protein Eng Des Sel; 2005 Feb; 18(2):71-8. PubMed ID: 15788420
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The biotin domain peptide from the biotin carboxyl carrier protein of Escherichia coli acetyl-CoA carboxylase causes a marked increase in the catalytic efficiency of biotin carboxylase and carboxyltransferase relative to free biotin.
    Blanchard CZ; Chapman-Smith A; Wallace JC; Waldrop GL
    J Biol Chem; 1999 Nov; 274(45):31767-9. PubMed ID: 10542197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into the carboxyl transferase domain mechanism of pyruvate carboxylase from Rhizobium etli.
    Zeczycki TN; St Maurice M; Jitrapakdee S; Wallace JC; Attwood PV; Cleland WW
    Biochemistry; 2009 May; 48(20):4305-13. PubMed ID: 19341298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.