BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 20947120)

  • 1. Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity.
    Godinez IG; Darnault CJ
    Water Res; 2011 Jan; 45(2):839-51. PubMed ID: 20947120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deposition and release kinetics of nano-TiO2 in saturated porous media: effects of solution ionic strength and surfactants.
    Godinez IG; Darnault CJ; Khodadoust AP; Bogdan D
    Environ Pollut; 2013 Mar; 174():106-13. PubMed ID: 23246754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media.
    Solovitch N; Labille J; Rose J; Chaurand P; Borschneck D; Wiesner MR; Bottero JY
    Environ Sci Technol; 2010 Jul; 44(13):4897-902. PubMed ID: 20524647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2010 Nov; 118(3-4):199-207. PubMed ID: 20739092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ionic liquid templated porous nano-TiO2 particles for the selective isolation of cytochrome c.
    Meng H; Chen XW; Wang JH
    Nanotechnology; 2010 Sep; 21(38):385704. PubMed ID: 20798466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation and transport of copper oxide nanoparticles in porous media.
    Jeong SW; Kim SD
    J Environ Monit; 2009 Sep; 11(9):1595-600. PubMed ID: 19724827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and deposition behavior of boron nanoparticles in porous media.
    Liu X; Wazne M; Christodoulatos C; Jasinkiewicz KL
    J Colloid Interface Sci; 2009 Feb; 330(1):90-6. PubMed ID: 18977491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms.
    Chen G; Liu X; Su C
    Langmuir; 2011 May; 27(9):5393-402. PubMed ID: 21446737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate.
    Chowdhury I; Hong Y; Honda RJ; Walker SL
    J Colloid Interface Sci; 2011 Aug; 360(2):548-55. PubMed ID: 21640358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media.
    Wang X; Cai L; Han P; Lin D; Kim H; Tong M
    Environ Pollut; 2014 Dec; 195():31-8. PubMed ID: 25194269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH.
    Fang J; Xu MJ; Wang DJ; Wen B; Han JY
    Water Res; 2013 Mar; 47(3):1399-408. PubMed ID: 23276424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media.
    Lv X; Gao B; Sun Y; Dong S; Wu J; Jiang B; Shi X
    Sci Total Environ; 2016 Sep; 563-564():987-95. PubMed ID: 26774131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media.
    Fan W; Jiang X; Lu Y; Huo M; Lin S; Geng Z
    J Environ Sci (China); 2015 Sep; 35():12-19. PubMed ID: 26354687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzyme activity inhibition and secondary structure disruption of nano-TiO2 on pepsin.
    Zhu RR; Wang WR; Sun XY; Liu H; Wang SL
    Toxicol In Vitro; 2010 Sep; 24(6):1639-47. PubMed ID: 20541600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns.
    Chen G; Liu X; Su C
    Environ Sci Technol; 2012 Jul; 46(13):7142-50. PubMed ID: 22681399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO₂-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: structures and quantities.
    Botta C; Labille J; Auffan M; Borschneck D; Miche H; Cabié M; Masion A; Rose J; Bottero JY
    Environ Pollut; 2011 Jun; 159(6):1543-50. PubMed ID: 21481996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology of metal nanoparticles photodeposited on TiO2/silical gel and photothermal activity for destruction of ethylene.
    Hu C; Lin LY; Hu XX
    J Environ Sci (China); 2006; 18(1):76-82. PubMed ID: 20050552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acute and chronic effects of nano- and non-nano-scale TiO(2) and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna.
    Wiench K; Wohlleben W; Hisgen V; Radke K; Salinas E; Zok S; Landsiedel R
    Chemosphere; 2009 Sep; 76(10):1356-65. PubMed ID: 19580988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-SiO
    Ghosh D; Das S; Gahlot VK; Pulimi M; Anand S; Chandrasekaran N; Rai PK; Mukherjee A
    J Contam Hydrol; 2022 Jun; 248():104029. PubMed ID: 35653834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.