BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 20947120)

  • 21. Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand.
    Phenrat T; Kim HJ; Fagerlund F; Illangasekare T; Lowry GV
    J Contam Hydrol; 2010 Nov; 118(3-4):152-64. PubMed ID: 20926157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating.
    Petosa AR; Brennan SJ; Rajput F; Tufenkji N
    Water Res; 2012 Mar; 46(4):1273-85. PubMed ID: 22236555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transport and deposition of polymer-modified Fe0 nanoparticles in 2-D heterogeneous porous media: effects of particle concentration, Fe0 content, and coatings.
    Phenrat T; Cihan A; Kim HJ; Mital M; Illangasekare T; Lowry GV
    Environ Sci Technol; 2010 Dec; 44(23):9086-93. PubMed ID: 21058703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation.
    Pettibone JM; Cwiertny DM; Scherer M; Grassian VH
    Langmuir; 2008 Jun; 24(13):6659-67. PubMed ID: 18537279
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of TiO
    Dai C; Shen H; Duan Y; You X; Lai X; Liu S; Zhang Y; Hon LK; Baek K; Tu Y; Zhou L; Xu D
    Environ Sci Pollut Res Int; 2022 Feb; 29(6):9306-9317. PubMed ID: 34505247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-aluminum: transport through sand columns and environmental effects on plants and soil communities.
    Doshi R; Braida W; Christodoulatos C; Wazne M; O'Connor G
    Environ Res; 2008 Mar; 106(3):296-303. PubMed ID: 17537426
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of the interaction of TiO2 nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity.
    Zheng D; Wang N; Wang X; Tang Y; Zhu L; Huang Z; Tang H; Shi Y; Wu Y; Zhang M; Lu B
    J Hazard Mater; 2012 Jan; 199-200():426-32. PubMed ID: 22138173
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone.
    Uyusur B; Darnault CJ; Snee PT; Kokën E; Jacobson AR; Wells RR
    J Contam Hydrol; 2010 Nov; 118(3-4):184-98. PubMed ID: 21056511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of nano-sized titanium dioxide in an aqueous environment: effects of pH, dissolved organic matter and divalent cations.
    Yang XN; Cui FY
    Water Sci Technol; 2013; 68(2):276-82. PubMed ID: 23863417
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deposition mechanisms of TiO2 nanoparticles in a parallel plate system.
    Chowdhury I; Walker SL
    J Colloid Interface Sci; 2012 Mar; 369(1):16-22. PubMed ID: 22226475
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vitro phototoxicity and hazard identification of nano-scale titanium dioxide.
    Sanders K; Degn LL; Mundy WR; Zucker RM; Dreher K; Zhao B; Roberts JE; Boyes WK
    Toxicol Appl Pharmacol; 2012 Jan; 258(2):226-36. PubMed ID: 22115978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dispersion and stability of titanium dioxide nanoparticles in aqueous suspension: effects of ultrasonication and concentration.
    Qi J; Ye YY; Wu JJ; Wang HT; Li FT
    Water Sci Technol; 2013; 67(1):147-51. PubMed ID: 23128632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transport of metal oxide nanoparticles in saturated porous media.
    Ben-Moshe T; Dror I; Berkowitz B
    Chemosphere; 2010 Sep; 81(3):387-93. PubMed ID: 20678789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.
    He F; Zhang M; Qian T; Zhao D
    J Colloid Interface Sci; 2009 Jun; 334(1):96-102. PubMed ID: 19383562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High mobility of SDBS-dispersed single-walled carbon nanotubes in saturated and unsaturated porous media.
    Tian Y; Gao B; Ziegler KJ
    J Hazard Mater; 2011 Feb; 186(2-3):1766-72. PubMed ID: 21236566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Binding of ionic surfactants to purified humic acid.
    Koopal LK; Goloub TP; Davis TA
    J Colloid Interface Sci; 2004 Jul; 275(2):360-7. PubMed ID: 15178260
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of humic acid on the aggregation of titanium dioxide nanoparticles under different pH and ionic strengths.
    Zhu M; Wang H; Keller AA; Wang T; Li F
    Sci Total Environ; 2014 Jul; 487():375-80. PubMed ID: 24793841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.