BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 20947201)

  • 1. Modelling of an enhanced PAH attenuation experiment and associated biogeochemical changes at a former gasworks site in southern Germany.
    Herold M; Greskowiak J; Ptak T; Prommer H
    J Contam Hydrol; 2011 Jan; 119(1-4):99-112. PubMed ID: 20947201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and attenuation of specific organic compounds in the groundwater plume at a former gasworks site.
    Zamfirescu D; Grathwohl P
    J Contam Hydrol; 2001 Dec; 53(3-4):407-27. PubMed ID: 11820480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of physicochemical methods for the remediation of porous medium systems contaminated with tar.
    Hauswirth SC; Miller CT
    J Contam Hydrol; 2014 Oct; 167():44-60. PubMed ID: 25190671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeochemical and isotopic gradients in a BTEX/PAH contaminant plume: model-based interpretation of a high-resolution field data set.
    Prommer H; Anneser B; Rolle M; Einsiedl F; Griebler C
    Environ Sci Technol; 2009 Nov; 43(21):8206-12. PubMed ID: 19924945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beneficial effects of dynamic groundwater flow and redox conditions on Natural Attenuation of mono-, poly-, and NSO-heterocyclic hydrocarbons.
    Salowsky H; Schäfer W; Schneider AL; Müller A; Dreher C; Tiehm A
    J Contam Hydrol; 2021 Dec; 243():103883. PubMed ID: 34479119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of heterocylic aromatic compounds in monitored natural attenuation for coal tar contaminated aquifers: A review.
    Blum P; Sagner A; Tiehm A; Martus P; Wendel T; Grathwohl P
    J Contam Hydrol; 2011 Nov; 126(3-4):181-94. PubMed ID: 22115084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidating the fate of a mixed toluene, DHM, methanol, and i-propanol plume during in situ bioremediation.
    Verardo E; Atteia O; Prommer H
    J Contam Hydrol; 2017 Jun; 201():6-18. PubMed ID: 28433208
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of microbial natural attenuation in groundwater polluted with gasworks residues.
    Schulze S; Tiehm A
    Water Sci Technol; 2004; 50(5):347-53. PubMed ID: 15497868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissolution and removal of PAHs from a contaminated soil using sunflower oil.
    Gong Z; Alef K; Wilke BM; Li P
    Chemosphere; 2005 Jan; 58(3):291-8. PubMed ID: 15581932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process.
    Ferguson AS; Huang WE; Lawson KA; Doherty R; Gibert O; Dickson KW; Whiteley AS; Kulakov LA; Thompson IP; Kalin RM; Larkin MJ
    J Appl Microbiol; 2007 May; 102(5):1227-38. PubMed ID: 17448158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs).
    Gan S; Lau EV; Ng HK
    J Hazard Mater; 2009 Dec; 172(2-3):532-49. PubMed ID: 19700241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils.
    Yap CL; Gan S; Ng HK
    J Hazard Mater; 2010 May; 177(1-3):28-41. PubMed ID: 20006435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.
    Molins S; Mayer KU; Amos RT; Bekins BA
    J Contam Hydrol; 2010 Mar; 112(1-4):15-29. PubMed ID: 19853961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of hydrophobicity in PAH-contaminated soils during phytoremediation.
    Cofield N; Banks MK; Schwab AP
    Environ Pollut; 2007 Jan; 145(1):60-7. PubMed ID: 16806619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of chemical oxidation on sorption and desorption of PAHs in typical Chinese soils.
    Chen W; Hou L; Luo X; Zhu L
    Environ Pollut; 2009 Jun; 157(6):1894-903. PubMed ID: 19233529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lability of polycyclic aromatic hydrocarbons in the rhizosphere.
    Cofield N; Banks MK; Schwab AP
    Chemosphere; 2008 Feb; 70(9):1644-52. PubMed ID: 17900653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozone treatment of PAH contaminated soils: operating variables effect.
    Rivas J; Gimeno O; de la Calle RG; Beltrán FJ
    J Hazard Mater; 2009 Sep; 169(1-3):509-15. PubMed ID: 19409699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of polycyclic aromatic hydrocarbons in soil by a two-step sequential treatment.
    Pizzul L; Sjögren A; Castillo Mdel P; Stenström J
    Biodegradation; 2007 Oct; 18(5):607-16. PubMed ID: 17216539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical quantification of mass fluxes and natural attenuation rate constants at a former gasworks site.
    Bockelmann A; Ptak T; Teutsch G
    J Contam Hydrol; 2001 Dec; 53(3-4):429-53. PubMed ID: 11820481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.