BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20947345)

  • 1. Chemo-microbial conversion of cellulose into polyhydroxybutyrate through ruthenium-catalyzed hydrolysis of cellulose into glucose.
    Matsumoto K; Kobayashi H; Ikeda K; Komanoya T; Fukuoka A; Taguchi S
    Bioresour Technol; 2011 Feb; 102(3):3564-7. PubMed ID: 20947345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyhydroxyalkanoates production from cellulose hydrolysate in Escherichia coli LS5218 with superior resistance to 5-hydroxymethylfurfural.
    Nduko JM; Suzuki W; Matsumoto K; Kobayashi H; Ooi T; Fukuoka A; Taguchi S
    J Biosci Bioeng; 2012 Jan; 113(1):70-2. PubMed ID: 21993429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly[(R)-3-hydroxybutyrate] formation in Escherichia coli from glucose through an enoyl-CoA hydratase-mediated pathway.
    Sato S; Nomura CT; Abe H; Doi Y; Tsuge T
    J Biosci Bioeng; 2007 Jan; 103(1):38-44. PubMed ID: 17298899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of cellulose-utilizing Escherichia coli based on a secretable cellulase.
    Gao D; Luan Y; Wang Q; Liang Q; Qi Q
    Microb Cell Fact; 2015 Oct; 14():159. PubMed ID: 26452465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-tolerant mesoporous-carbon-supported ruthenium catalysts for the hydrolysis of cellulose to glucose.
    Kobayashi H; Komanoya T; Hara K; Fukuoka A
    ChemSusChem; 2010 Apr; 3(4):440-3. PubMed ID: 20198680
    [No Abstract]   [Full Text] [Related]  

  • 6. Production and characterization of poly-(3-hydroxybutyrate) from recombinant Escherichia coli grown on cheap renewable carbon substrates.
    Fonseca GG; Fonseca GG; de Arruda-Caulkins JC; Vasconcellos Antonio R
    Waste Manag Res; 2008 Dec; 26(6):546-52. PubMed ID: 19039071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production.
    Li ZJ; Cai L; Wu Q; Chen GQ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):939-47. PubMed ID: 19357844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli.
    Hong SH; Park SJ; Moon SY; Park JP; Lee SY
    Biotechnol Bioeng; 2003 Sep; 83(7):854-63. PubMed ID: 12889025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Governing chemistry of cellulose hydrolysis in supercritical water.
    Cantero DA; Bermejo MD; Cocero MJ
    ChemSusChem; 2015 Mar; 8(6):1026-33. PubMed ID: 25704124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemo-enzymatic synthesis of polyhydroxyalkanoate by an improved two-phase reaction system (TPRS).
    Han X; Satoh Y; Tajima K; Matsushima T; Munekata M
    J Biosci Bioeng; 2009 Dec; 108(6):517-23. PubMed ID: 19914586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Escherichia coli for enhanced biosynthesis of poly(3-hydroxybutyrate) based on proteome analysis.
    Lee SH; Kang KH; Kim EY; Chae TU; Oh YH; Hong SH; Song BK; Jegals J; Park SJ; Lee SY
    Biotechnol Lett; 2013 Oct; 35(10):1631-7. PubMed ID: 23743954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of poly(3-hydroxybutyrate) [P(3HB)] production in Corynebacterium glutamicum by codon optimization, point mutation and gene dosage of P(3HB) biosynthetic genes.
    Jo SJ; Matsumoto K; Leong CR; Ooi T; Taguchi S
    J Biosci Bioeng; 2007 Dec; 104(6):457-63. PubMed ID: 18215631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Biosynthesis and accumulation of poly(3-hydroxybutyrate) in Vibrio natriegens].
    Liu SJ
    Sheng Wu Gong Cheng Xue Bao; 2002 Sep; 18(5):614-8. PubMed ID: 12561210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous liberation of intracellular polyhydroxybutyrate granules in Escherichia coli.
    Jung IL; Phyo KH; Kim KC; Park HK; Kim IG
    Res Microbiol; 2005 Sep; 156(8):865-73. PubMed ID: 16024232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic conversion of carbohydrates into 5-hydroxymethylfurfural over cellulose-derived carbonaceous catalyst in ionic liquid.
    Hu L; Zhao G; Tang X; Wu Z; Xu J; Lin L; Liu S
    Bioresour Technol; 2013 Nov; 148():501-7. PubMed ID: 24090810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast transformation of glucose and di-/polysaccharides into 5-hydroxymethylfurfural by microwave heating in an ionic liquid/catalyst system.
    Qi X; Watanabe M; Aida TM; Smith RL
    ChemSusChem; 2010 Sep; 3(9):1071-7. PubMed ID: 20661994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate.
    Silva LF; Taciro MK; Michelin Ramos ME; Carter JM; Pradella JG; Gomez JG
    J Ind Microbiol Biotechnol; 2004 Jul; 31(6):245-54. PubMed ID: 15221664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation characteristics and protein expression patterns in a recombinant Escherichia coli mutant lacking phosphoglucose isomerase for poly(3-hydroxybutyrate) production.
    Kabir MM; Shimizu K
    Appl Microbiol Biotechnol; 2003 Aug; 62(2-3):244-55. PubMed ID: 12883871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of poly(lactate-co-3-hydroxybutyrate) from hybrid Miscanthus-derived sugars.
    Sun J; Utsunomia C; Sasaki S; Matsumoto K; Yamada T; Ooi T; Taguchi S
    Biosci Biotechnol Biochem; 2016; 80(4):818-20. PubMed ID: 26757596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Introduction of Vitreoscilla hemoglobin gene in a recombinant E. coli for PHB production].
    Yu H; Shi Y; Zhang Y; Yang S; Shen Z
    Wei Sheng Wu Xue Bao; 2001 Oct; 41(5):548-52. PubMed ID: 12552801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.