BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20947499)

  • 1. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides.
    Muiznieks LD; Keeley FW
    J Biol Chem; 2010 Dec; 285(51):39779-89. PubMed ID: 20947499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.
    Muiznieks LD; Reichheld SE; Sitarz EE; Miao M; Keeley FW
    Biopolymers; 2015 Oct; 103(10):563-73. PubMed ID: 25924982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides.
    Miao M; Cirulis JT; Lee S; Keeley FW
    Biochemistry; 2005 Nov; 44(43):14367-75. PubMed ID: 16245953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils.
    Rauscher S; Baud S; Miao M; Keeley FW; Pomès R
    Structure; 2006 Nov; 14(11):1667-76. PubMed ID: 17098192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational transitions of the cross-linking domains of elastin during self-assembly.
    Reichheld SE; Muiznieks LD; Stahl R; Simonetti K; Sharpe S; Keeley FW
    J Biol Chem; 2014 Apr; 289(14):10057-68. PubMed ID: 24550393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastin binding protein and FKBP65 modulate in vitro self-assembly of human tropoelastin.
    Miao M; Reichheld SE; Muiznieks LD; Huang Y; Keeley FW
    Biochemistry; 2013 Nov; 52(44):7731-41. PubMed ID: 24106871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of domain 30 of tropoelastin to elastic fiber formation and material elasticity.
    Muiznieks LD; Miao M; Sitarz EE; Keeley FW
    Biopolymers; 2016 May; 105(5):267-75. PubMed ID: 26763595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequence and structure determinants for the self-aggregation of recombinant polypeptides modeled after human elastin.
    Miao M; Bellingham CM; Stahl RJ; Sitarz EE; Lane CJ; Keeley FW
    J Biol Chem; 2003 Dec; 278(49):48553-62. PubMed ID: 14500713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and morphology of self-assembly of an elastin-like polypeptide based on the alternating domain arrangement of human tropoelastin.
    Cirulis JT; Keeley FW
    Biochemistry; 2010 Jul; 49(27):5726-33. PubMed ID: 20527981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin.
    Keeley FW; Bellingham CM; Woodhouse KA
    Philos Trans R Soc Lond B Biol Sci; 2002 Feb; 357(1418):185-9. PubMed ID: 11911775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence variants of human tropoelastin affecting assembly, structural characteristics and functional properties of polymeric elastin in health and disease.
    Reichheld SE; Muiznieks LD; Lu R; Sharpe S; Keeley FW
    Matrix Biol; 2019 Nov; 84():68-80. PubMed ID: 31254613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence and domain arrangements influence mechanical properties of elastin-like polymeric elastomers.
    Miao M; Sitarz E; Bellingham CM; Won E; Muiznieks LD; Keeley FW
    Biopolymers; 2013 Jun; 99(6):392-407. PubMed ID: 23529691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Liquid-Liquid Phase Separation in Assembly of Elastin and Other Extracellular Matrix Proteins.
    Muiznieks LD; Sharpe S; Pomès R; Keeley FW
    J Mol Biol; 2018 Nov; 430(23):4741-4753. PubMed ID: 29886015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like fibrils in elastin-related polypeptides: structural characterization and elastic properties.
    del Mercato LL; Maruccio G; Pompa PP; Bochicchio B; Tamburro AM; Cingolani R; Rinaldi R
    Biomacromolecules; 2008 Mar; 9(3):796-803. PubMed ID: 18257556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-aggregation characteristics of recombinantly expressed human elastin polypeptides.
    Bellingham CM; Woodhouse KA; Robson P; Rothstein SJ; Keeley FW
    Biochim Biophys Acta; 2001 Nov; 1550(1):6-19. PubMed ID: 11738083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides.
    Kim W; McMillan RA; Snyder JP; Conticello VP
    J Am Chem Soc; 2005 Dec; 127(51):18121-32. PubMed ID: 16366565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties.
    Bellingham CM; Lillie MA; Gosline JM; Wright GM; Starcher BC; Bailey AJ; Woodhouse KA; Keeley FW
    Biopolymers; 2003 Dec; 70(4):445-55. PubMed ID: 14648756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Domains in tropoelastin that mediate elastin deposition in vitro and in vivo.
    Kozel BA; Wachi H; Davis EC; Mecham RP
    J Biol Chem; 2003 May; 278(20):18491-8. PubMed ID: 12626514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of structure and dynamics during phase separation of an elastomeric protein.
    Reichheld SE; Muiznieks LD; Keeley FW; Sharpe S
    Proc Natl Acad Sci U S A; 2017 May; 114(22):E4408-E4415. PubMed ID: 28507126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3.
    Moscarelli P; Boraldi F; Bochicchio B; Pepe A; Salvi AM; Quaglino D
    Matrix Biol; 2014 Jun; 36():15-27. PubMed ID: 24686253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.