BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 20947520)

  • 1. IL-2 costimulation enables statin-mediated activation of human NK cells, preferentially through a mechanism involving CD56+ dendritic cells.
    Gruenbacher G; Gander H; Nussbaumer O; Nussbaumer W; Rahm A; Thurnher M
    Cancer Res; 2010 Dec; 70(23):9611-20. PubMed ID: 20947520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower concentrations of methyl-β-cyclodextrin combined with interleukin-2 can preferentially induce activation and proliferation of natural killer cells in human peripheral blood.
    Lü HZ; Zhu AY; Chen Y; Tang J; Li BQ
    Hum Immunol; 2011 Jul; 72(7):538-46. PubMed ID: 21540068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid generation of potent and tumor-specific cytotoxic T lymphocytes by interleukin 18 using dendritic cells and natural killer cells.
    Tanaka F; Hashimoto W; Okamura H; Robbins PD; Lotze MT; Tahara H
    Cancer Res; 2000 Sep; 60(17):4838-44. PubMed ID: 10987295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-23 modulates CD56+/CD3- NK cell and CD56+/CD3+ NK-like T cell function differentially from IL-12.
    van de Wetering D; de Paus RA; van Dissel JT; van de Vosse E
    Int Immunol; 2009 Feb; 21(2):145-53. PubMed ID: 19088061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DC-like cell-dependent activation of human natural killer cells by the bisphosphonate zoledronic acid is regulated by γδ T lymphocytes.
    Nussbaumer O; Gruenbacher G; Gander H; Thurnher M
    Blood; 2011 Sep; 118(10):2743-51. PubMed ID: 21673342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2-, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells.
    Naume B; Gately M; Espevik T
    J Immunol; 1992 Apr; 148(8):2429-36. PubMed ID: 1373169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G-CSF-mobilized CD34+ cells cultured in interleukin-2 and stem cell factor generate a phenotypically novel monocyte.
    Sconocchia G; Fujiwara H; Rezvani K; Keyvanfar K; El Ouriaghli F; Grube M; Melenhorst J; Hensel N; Barrett AJ
    J Leukoc Biol; 2004 Dec; 76(6):1214-9. PubMed ID: 15345723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic proliferation and activation of natural killer cells by interleukin 12 and interleukin 18.
    Lauwerys BR; Renauld JC; Houssiau FA
    Cytokine; 1999 Nov; 11(11):822-30. PubMed ID: 10547269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In-vitro IL-2 or IFN-α-induced NKG2D and CD161 NK cell receptor expression indicates novel aspects of NK cell activation in metastatic melanoma patients.
    Konjević G; Mirjačić Martinović K; Vuletić A; Babović N
    Melanoma Res; 2010 Dec; 20(6):459-67. PubMed ID: 20938360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of monocyte-derived IFNalpha-generated dendritic cells.
    Jacobs B; Wuttke M; Papewalis C; Fenk R; Stüssgen C; Baehring T; Schinner S; Raffel A; Seissler J; Schott M
    Horm Metab Res; 2008 Feb; 40(2):117-21. PubMed ID: 18283629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of IL-4 in proliferation and differentiation of human natural killer cells. Study of an IL-4-dependent versus an IL-2-dependent natural killer cell clone.
    Hayakawa K; Salmeron MA; Kornbluth J; Bucana C; Itoh K
    J Immunol; 1991 Apr; 146(7):2453-60. PubMed ID: 1900882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human CD56bright and CD56dim natural killer cell subsets respond differentially to direct stimulation with Mycobacterium bovis bacillus Calmette-Guérin.
    Batoni G; Esin S; Favilli F; Pardini M; Bottai D; Maisetta G; Florio W; Campa M
    Scand J Immunol; 2005 Dec; 62(6):498-506. PubMed ID: 16316416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interleukin-18 (IL-18) synergizes with IL-2 to enhance cytotoxicity, interferon-gamma production, and expansion of natural killer cells.
    Son YI; Dallal RM; Mailliard RB; Egawa S; Jonak ZL; Lotze MT
    Cancer Res; 2001 Feb; 61(3):884-8. PubMed ID: 11221875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural killer and lymphokine-activated killer cell activities from human marrow precursors. II. The effects of IL-3 and IL-4.
    Keever CA; Pekle K; Gazzola MV; Collins NH; Bourhis JH; Gillio A
    J Immunol; 1989 Nov; 143(10):3241-9. PubMed ID: 2809200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential cytokine and chemokine gene expression by human NK cells following activation with IL-18 or IL-15 in combination with IL-12: implications for the innate immune response.
    Fehniger TA; Shah MH; Turner MJ; VanDeusen JB; Whitman SP; Cooper MA; Suzuki K; Wechser M; Goodsaid F; Caligiuri MA
    J Immunol; 1999 Apr; 162(8):4511-20. PubMed ID: 10201989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recruitment and activation of natural killer cells in vitro by a human dendritic cell vaccine.
    Gustafsson K; Ingelsten M; Bergqvist L; Nyström J; Andersson B; Karlsson-Parra A
    Cancer Res; 2008 Jul; 68(14):5965-71. PubMed ID: 18632652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Costimulation of human natural killer cell proliferation: role of accessory cytokines and cell contact-dependent signals.
    Robertson MJ; Cameron C; Lazo S; Cochran KJ; Voss SD; Ritz J
    Nat Immun; 1996-1997; 15(5):213-26. PubMed ID: 9390270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bcl-2 is expressed in human natural killer cells and is regulated by interleukin-2.
    Jiang S; Munker R; Andreeff M
    Nat Immun; 1996-1997; 15(6):312-7. PubMed ID: 9523282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interleukin-18 restores immune suppression in patients with nonseptic surgery, but not with sepsis.
    Hiraki S; Ono S; Kinoshita M; Tsujimoto H; Seki S; Mochizuki H
    Am J Surg; 2007 Jun; 193(6):676-80. PubMed ID: 17512275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of CD56brightCD11c+ cells in IL-18-mediated expansion of human γδ T cells.
    Tsuda J; Li W; Yamanishi H; Yamamoto H; Okuda A; Kubo S; Ma Z; Terada N; Tanaka Y; Okamura H
    J Immunol; 2011 Feb; 186(4):2003-12. PubMed ID: 21239711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.