These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 20947589)
1. Contribution of activation products to occupational exposure following treatment using high-energy photons in radiotherapy. Petrović N; Krestić-Vesović J; Stojanović D; Ciraj-Bjelac O; Lazarević D; Kovacević M Radiat Prot Dosimetry; 2011 Jan; 143(1):109-12. PubMed ID: 20947589 [TBL] [Abstract][Full Text] [Related]
2. DOSE AND GAMMA-RAY SPECTRA FROM NEUTRON-INDUCED RADIOACTIVITY IN MEDICAL LINEAR ACCELERATORS FOLLOWING HIGH-ENERGY TOTAL BODY IRRADIATION. Keehan S; Taylor ML; Smith RL; Dunn L; Kron T; Franich RD Radiat Prot Dosimetry; 2016 Dec; 172(4):327-332. PubMed ID: 26598738 [TBL] [Abstract][Full Text] [Related]
3. [Assessment of potential exposure risk for radiotherapy staff working with lineal accelerators]. Tofani A; Del Corona A; Manetti F Radiol Med; 1999 Apr; 97(4):286-95. PubMed ID: 10414263 [TBL] [Abstract][Full Text] [Related]
4. Comparison of activation products and induced dose rates in different high-energy medical linear accelerators. Fischer HW; Tabot B; Poppe B Health Phys; 2008 Mar; 94(3):272-8. PubMed ID: 18301101 [TBL] [Abstract][Full Text] [Related]
5. Potential hazard due to induced radioactivity secondary to radiotherapy: the report of task group 136 of the American Association of Physicists in Medicine. Thomadsen B; Nath R; Bateman FB; Farr J; Glisson C; Islam MK; LaFrance T; Moore ME; George Xu X; Yudelev M Health Phys; 2014 Nov; 107(5):442-60. PubMed ID: 25271934 [TBL] [Abstract][Full Text] [Related]
6. Photon doses at the entrance of 60Co and low-energy medical accelerator rooms under unusual irradiation conditions. Facure A; Cardoso SC; da Rosa LA; da Silva AX Radiat Prot Dosimetry; 2010 Mar; 138(3):251-6. PubMed ID: 19965909 [TBL] [Abstract][Full Text] [Related]
7. Neutron dose calculation at the maze entrance of medical linear accelerator rooms. Falcão RC; Facure A; Silva AX Radiat Prot Dosimetry; 2007; 123(3):283-7. PubMed ID: 17005540 [TBL] [Abstract][Full Text] [Related]
8. Radiation exposure of personnel during intraoperative radiotherapy (IORT): radiation protection aspects. Strigari L; Soriani A; Landoni V; Teodoli S; Bruzzaniti V; Benassi M J Exp Clin Cancer Res; 2004 Sep; 23(3):489-94. PubMed ID: 15595641 [TBL] [Abstract][Full Text] [Related]
9. Activation processes in a medical linear accelerator and spatial distribution of activation products. Fischer HW; Tabot BE; Poppe B Phys Med Biol; 2006 Dec; 51(24):N461-6. PubMed ID: 17148816 [TBL] [Abstract][Full Text] [Related]
10. Undesirable nuclear reactions and induced radioactivity as a result of the use of the high-energy therapeutic beams generated by medical linacs. Konefal A; Polaczek-Grelik K; Zipper W Radiat Prot Dosimetry; 2008; 128(2):133-45. PubMed ID: 17569692 [TBL] [Abstract][Full Text] [Related]
11. The measurement of photoneutron dose in the vicinity of clinical linear accelerators. Rivera JC; Falcão RC; Dealmeida CE Radiat Prot Dosimetry; 2008; 130(4):403-9. PubMed ID: 18375468 [TBL] [Abstract][Full Text] [Related]
12. A REVIEW ON THE RADIATION THERAPY TECHNOLOGIST RECEIVED DOSE FROM INDUCED ACTIVATION IN HIGH-ENERGY MEDICAL LINEAR ACCELERATORS. Nourmohammadi B; Mesbahi A Radiat Prot Dosimetry; 2018 Jun; 179(4):333-348. PubMed ID: 29309661 [TBL] [Abstract][Full Text] [Related]
13. Health physics aspects in treatment rooms after 18-MV X-ray irradiations. Kalef-Ezra JA Radiat Prot Dosimetry; 2011 Sep; 147(1-2):281-6. PubMed ID: 21979431 [TBL] [Abstract][Full Text] [Related]
14. The effect of field modifier blocks on the fast photoneutron dose equivalent from two high-energy medical linear accelerators. Hashemi SM; Hashemi-Malayeri B; Raisali G; Shokrani P; Sharafi AA; Jafarizadeh M Radiat Prot Dosimetry; 2008; 128(3):359-62. PubMed ID: 17875628 [TBL] [Abstract][Full Text] [Related]
15. Health physics aspects of neutron activated components in a linear accelerator. Guo S; Ziemer PL Health Phys; 2004 May; 86(5 Suppl):S94-S102. PubMed ID: 15069298 [TBL] [Abstract][Full Text] [Related]
16. Towards an optimum design of a P-MOS radiation detector for use in high-energy medical photon beams and neutron facilities: analysis of activation materials. Price RA Radiat Prot Dosimetry; 2005; 115(1-4):386-90. PubMed ID: 16381751 [TBL] [Abstract][Full Text] [Related]
17. [Activation of solid materials in a medical linear electron accelerator]. Ewen K; Lauber-Altmann I Rontgenblatter; 1987 Jun; 40(6):185-90. PubMed ID: 3616427 [TBL] [Abstract][Full Text] [Related]
18. Effect of wedge filter and field size on photoneutron dose equivalent for an 18MV photon beam of a medical linear accelerator. Mesbahi A; Keshtkar A; Mohammadi E; Mohammadzadeh M Appl Radiat Isot; 2010 Jan; 68(1):84-9. PubMed ID: 19748787 [TBL] [Abstract][Full Text] [Related]
19. [Dose distribution of photons and neutrons outside of the irradiation field of a 8-mev linear accelerator (author's transl)]. Nemec HW; Roth J Strahlentherapie; 1978 Jun; 154(6):380-7. PubMed ID: 96550 [TBL] [Abstract][Full Text] [Related]
20. Neutron measurements in a Varian 2,100C LINAC facility using a Bonner sphere system based on passive gold activation detectors. Fernández F; Domingo C; Amgarou K; Castelo J; Bouassoule T; Garcia MJ; Luguera E Radiat Prot Dosimetry; 2007; 126(1-4):361-5. PubMed ID: 17525060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]