These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20947953)

  • 1. Simultaneous quantification of multiple magnetic nanoparticles.
    Rauwerdink AM; Giustini AJ; Weaver JB
    Nanotechnology; 2010 Nov; 21(45):455101. PubMed ID: 20947953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concurrent quantification of multiple nanoparticle bound states.
    Rauwerdink AM; Weaver JB
    Med Phys; 2011 Mar; 38(3):1136-40. PubMed ID: 21520825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular sensing with magnetic nanoparticles using magnetic spectroscopy of nanoparticle Brownian motion.
    Zhang X; Reeves DB; Perreard IM; Kett WC; Griswold KE; Gimi B; Weaver JB
    Biosens Bioelectron; 2013 Dec; 50():441-6. PubMed ID: 23896525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic spectroscopy of nanoparticle Brownian motion measurement of microenvironment matrix rigidity.
    Weaver JB; Rauwerdink KM; Rauwerdink AM; Perreard IM
    Biomed Tech (Berl); 2013 Dec; 58(6):547-50. PubMed ID: 23945110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Scaling and the Master Variable for Brownian Magnetic Nanoparticle Dynamics.
    Reeves DB; Shi Y; Weaver JB
    PLoS One; 2016; 11(3):e0150856. PubMed ID: 26959493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection.
    Gutiérrez L; Morales MP; Lázaro FJ
    Phys Chem Chem Phys; 2014 Mar; 16(10):4456-64. PubMed ID: 24468801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T₁ estimation for aqueous iron oxide nanoparticle suspensions using a variable flip angle SWIFT sequence.
    Wang L; Corum CA; Idiyatullin D; Garwood M; Zhao Q
    Magn Reson Med; 2013 Aug; 70(2):341-7. PubMed ID: 23813886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of magnetic nanoparticles with low frequency magnetic fields: compensating for relaxation effects.
    Weaver JB; Zhang X; Kuehlert E; Toraya-Brown S; Reeves DB; Perreard IM; Fiering S
    Nanotechnology; 2013 Aug; 24(32):325502. PubMed ID: 23867287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of particle shape and size on T2 relaxation in magnetic resonance imaging.
    York JN; Albanese C; Rodriguez O; Le YC; Ackun-Farmmer M; Van Keuren E
    J Biomed Nanotechnol; 2014 Nov; 10(11):3392-6. PubMed ID: 26000397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analog receive signal processing for magnetic particle imaging.
    Graeser M; Knopp T; Grüttner M; Sattel TF; Buzug TM
    Med Phys; 2013 Apr; 40(4):042303. PubMed ID: 23556916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SU-E-I-81: Toward in Vivo Magnetic Spectroscopy of Brownian Motion.
    Reeves D; Brown S; Fiering S; Weaver J
    Med Phys; 2012 Jun; 39(6Part5):3643. PubMed ID: 28517672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery.
    Hewlin RL; Smith M; Kizito JP
    Cardiovasc Eng Technol; 2023 Oct; 14(5):694-712. PubMed ID: 37723333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulational validation of color magnetic particle imaging (cMPI).
    Han SH; Cho E; Lee DK; Cho G; Kim YR; Cho H
    Phys Med Biol; 2014 Nov; 59(21):6521-36. PubMed ID: 25309980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First experimental evidence of the feasibility of multi-color magnetic particle imaging.
    Rahmer J; Halkola A; Gleich B; Schmale I; Borgert J
    Phys Med Biol; 2015 Mar; 60(5):1775-91. PubMed ID: 25658130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating blood clot progression using magnetic particle spectroscopy.
    Khurshid H; Shi Y; Berwin BL; Weaver JB
    Med Phys; 2018 Jul; 45(7):3258-3263. PubMed ID: 29772078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axially elongated field-free point data acquisition in magnetic particle imaging.
    Kaethner C; Ahlborg M; Bringout G; Weber M; Buzug TM
    IEEE Trans Med Imaging; 2015 Feb; 34(2):381-7. PubMed ID: 25222946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying in vivo inflammation using magnetic nanoparticle spectra.
    Weaver JB; Ness DB; Fields J; Jyoti D; Gordon-Wylie SW; Berwin BL; Mirza S; Fiering SN
    Phys Med Biol; 2020 Jun; 65(12):125003. PubMed ID: 32311682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic particle imaging with tailored iron oxide nanoparticle tracers.
    Ferguson RM; Khandhar AP; Kemp SJ; Arami H; Saritas EU; Croft LR; Konkle J; Goodwill PW; Halkola A; Rahmer J; Borgert J; Conolly SM; Krishnan KM
    IEEE Trans Med Imaging; 2015 May; 34(5):1077-84. PubMed ID: 25438306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iron Speciation in Animal Tissues Using AC Magnetic Susceptibility Measurements: Quantification of Magnetic Nanoparticles, Ferritin, and Other Iron-Containing Species.
    Fernández-Afonso Y; Asín L; Beola L; Moros M; M de la Fuente J; Fratila RM; Grazú V; Gutiérrez L
    ACS Appl Bio Mater; 2022 May; 5(5):1879-1889. PubMed ID: 35179873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current investigations into magnetic nanoparticles for biomedical applications.
    Li X; Wei J; Aifantis KE; Fan Y; Feng Q; Cui FZ; Watari F
    J Biomed Mater Res A; 2016 May; 104(5):1285-96. PubMed ID: 26779606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.