These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 20948290)
1. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells? Dang CV Cell Cycle; 2010 Oct; 9(19):3884-6. PubMed ID: 20948290 [TBL] [Abstract][Full Text] [Related]
2. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression. Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen anabolism underlies the importance of glutaminolysis in proliferating cells. Meng M; Chen S; Lao T; Liang D; Sang N Cell Cycle; 2010 Oct; 9(19):3921-32. PubMed ID: 20935507 [TBL] [Abstract][Full Text] [Related]
4. Human sebaceous glands engage in aerobic glycolysis and glutaminolysis. Downie MM; Kealey T Br J Dermatol; 2004 Aug; 151(2):320-7. PubMed ID: 15327538 [TBL] [Abstract][Full Text] [Related]
5. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. DeBerardinis RJ; Mancuso A; Daikhin E; Nissim I; Yudkoff M; Wehrli S; Thompson CB Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19345-50. PubMed ID: 18032601 [TBL] [Abstract][Full Text] [Related]
6. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Wise DR; DeBerardinis RJ; Mancuso A; Sayed N; Zhang XY; Pfeiffer HK; Nissim I; Daikhin E; Yudkoff M; McMahon SB; Thompson CB Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18782-7. PubMed ID: 19033189 [TBL] [Abstract][Full Text] [Related]
7. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Gao P; Tchernyshyov I; Chang TC; Lee YS; Kita K; Ochi T; Zeller KI; De Marzo AM; Van Eyk JE; Mendell JT; Dang CV Nature; 2009 Apr; 458(7239):762-5. PubMed ID: 19219026 [TBL] [Abstract][Full Text] [Related]
8. Carbon source metabolism and its regulation in cancer cells. Yin C; Qie S; Sang N Crit Rev Eukaryot Gene Expr; 2012; 22(1):17-35. PubMed ID: 22339657 [TBL] [Abstract][Full Text] [Related]
9. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling. Yang C; Sudderth J; Dang T; Bachoo RM; McDonald JG; DeBerardinis RJ Cancer Res; 2009 Oct; 69(20):7986-93. PubMed ID: 19826036 [TBL] [Abstract][Full Text] [Related]
10. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection. Yu Y; Clippinger AJ; Alwine JC Trends Microbiol; 2011 Jul; 19(7):360-7. PubMed ID: 21570293 [TBL] [Abstract][Full Text] [Related]
11. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. Jiang Q; Qiu Y; Kurland IJ; Drlica K; Subbian S; Tyagi S; Shi L mBio; 2022 Aug; 13(4):e0127422. PubMed ID: 35762591 [TBL] [Abstract][Full Text] [Related]
12. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Wu H; Li Z; Yang P; Zhang L; Fan Y; Li Z Cell Signal; 2014 Nov; 26(11):2397-405. PubMed ID: 25041845 [TBL] [Abstract][Full Text] [Related]
13. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Hertz L; Kala G Metab Brain Dis; 2007 Dec; 22(3-4):199-218. PubMed ID: 17882538 [TBL] [Abstract][Full Text] [Related]
14. Comparative energy metabolism in cultured heart muscle and HeLa cells. Stanisz J; Wice BM; Kennell DE J Cell Physiol; 1983 Jun; 115(3):320-30. PubMed ID: 6853608 [TBL] [Abstract][Full Text] [Related]
15. Glutamine Anabolism Plays a Critical Role in Pancreatic Cancer by Coupling Carbon and Nitrogen Metabolism. Bott AJ; Shen J; Tonelli C; Zhan L; Sivaram N; Jiang YP; Yu X; Bhatt V; Chiles E; Zhong H; Maimouni S; Dai W; Velasquez S; Pan JA; Muthalagu N; Morton J; Anthony TG; Feng H; Lamers WH; Murphy DJ; Guo JY; Jin J; Crawford HC; Zhang L; White E; Lin RZ; Su X; Tuveson DA; Zong WX Cell Rep; 2019 Oct; 29(5):1287-1298.e6. PubMed ID: 31665640 [TBL] [Abstract][Full Text] [Related]
16. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Goto M; Miwa H; Shikami M; Tsunekawa-Imai N; Suganuma K; Mizuno S; Takahashi M; Mizutani M; Hanamura I; Nitta M Cancer Invest; 2014 Jul; 32(6):241-7. PubMed ID: 24762082 [TBL] [Abstract][Full Text] [Related]
17. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Gaglio D; Metallo CM; Gameiro PA; Hiller K; Danna LS; Balestrieri C; Alberghina L; Stephanopoulos G; Chiaradonna F Mol Syst Biol; 2011 Aug; 7():523. PubMed ID: 21847114 [TBL] [Abstract][Full Text] [Related]
18. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Chen JQ; Russo J Biochim Biophys Acta; 2012 Dec; 1826(2):370-84. PubMed ID: 22750268 [TBL] [Abstract][Full Text] [Related]
19. MYC-induced cancer cell energy metabolism and therapeutic opportunities. Dang CV; Le A; Gao P Clin Cancer Res; 2009 Nov; 15(21):6479-83. PubMed ID: 19861459 [TBL] [Abstract][Full Text] [Related]
20. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism. Dang CV Cold Spring Harb Symp Quant Biol; 2011; 76():369-74. PubMed ID: 21960526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]