BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20948905)

  • 1. In-depth analysis of exoproteomes from marine bacteria by shotgun liquid chromatography-tandem mass spectrometry: the Ruegeria pomeroyi DSS-3 case-study.
    Christie-Oleza JA; Armengaud J
    Mar Drugs; 2010 Jul; 8(8):2223-39. PubMed ID: 20948905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria.
    Christie-Oleza JA; Piña-Villalonga JM; Bosch R; Nogales B; Armengaud J
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013110. PubMed ID: 22122883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shotgun nanoLC-MS/MS proteogenomics to document MALDI-TOF biomarkers for screening new members of the Ruegeria genus.
    Christie-Oleza JA; Piña-Villalonga JM; Guerin P; Miotello G; Bosch R; Nogales B; Armengaud J
    Environ Microbiol; 2013 Jan; 15(1):133-47. PubMed ID: 22712501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the exoproteome of marine bacteria, lesson from a RTX-toxin abundantly secreted by Phaeobacter strain DSM 17395.
    Durighello E; Christie-Oleza JA; Armengaud J
    PLoS One; 2014; 9(2):e89691. PubMed ID: 24586966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of NanoLC Column and Gradient Length as well as MS/MS Frequency and Sample Complexity on Shotgun Protein Identification of Marine Bacteria.
    Wöhlbrand L; Rabus R; Blasius B; Feenders C
    J Mol Microbiol Biotechnol; 2017; 27(3):199-212. PubMed ID: 28850952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic insights into the lifestyle of an environmentally relevant marine bacterium.
    Christie-Oleza JA; Fernandez B; Nogales B; Bosch R; Armengaud J
    ISME J; 2012 Jan; 6(1):124-35. PubMed ID: 21776030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic Characterization of Antibiotic Resistance in
    Abril AG; Carrera M; Böhme K; Barros-Velázquez J; Calo-Mata P; Sánchez-Pérez A; Villa TG
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exoproteomics of Pathogens: Analysis of Toxins and Other Virulence Factors by Proteomics.
    Armengaud J; Duport C
    Methods Enzymol; 2017; 586():211-227. PubMed ID: 28137564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 100 Days of marine Synechococcus-Ruegeria pomeroyi interaction: A detailed analysis of the exoproteome.
    Kaur A; Hernandez-Fernaud JR; Aguilo-Ferretjans MDM; Wellington EM; Christie-Oleza JA
    Environ Microbiol; 2018 Feb; 20(2):785-799. PubMed ID: 29194907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput proteogenomics of Ruegeria pomeroyi: seeding a better genomic annotation for the whole marine Roseobacter clade.
    Christie-Oleza JA; Miotello G; Armengaud J
    BMC Genomics; 2012 Feb; 13():73. PubMed ID: 22336032
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Duport C; Rousset L; Alpha-Bazin B; Armengaud J
    Toxins (Basel); 2020 Oct; 12(10):. PubMed ID: 33036317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Bile Stress Response of
    Bagon BB; Oh JK; Valeriano VDV; Pajarillo EAB; Kang DK
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577166
    [No Abstract]   [Full Text] [Related]  

  • 14. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple shotgun proteomics method for rapid bacterial identification.
    Tracz DM; McCorrister SJ; Chong PM; Lee DM; Corbett CR; Westmacott GR
    J Microbiol Methods; 2013 Jul; 94(1):54-7. PubMed ID: 23631909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3.
    Cunliffe M
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures.
    Cabrita P; Batista S; Machado H; Moes S; Jenö P; Manadas B; Trigo MJ; Monteiro S; Ferreira RB; Brito L
    Foodborne Pathog Dis; 2013 May; 10(5):428-34. PubMed ID: 23531123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of cytoplasmic membrane proteome of Streptococcus pneumoniae by shotgun proteomic approach.
    Choi CW; Yun SH; Kwon SO; Leem SH; Choi JS; Yun CY; Kim SI
    J Microbiol; 2010 Dec; 48(6):872-6. PubMed ID: 21221949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insight into the core and variant exoproteomes of Listeria monocytogenes species by comparative subproteomic analysis.
    Dumas E; Desvaux M; Chambon C; Hébraud M
    Proteomics; 2009 Jun; 9(11):3136-55. PubMed ID: 19526548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple determination of six groups of lipophilic marine algal toxins in seawater by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry.
    Wang J; Chen J; He X; Hao S; Wang Y; Zheng X; Wang B
    Chemosphere; 2021 Jan; 262():128374. PubMed ID: 33182088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.