These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
227 related articles for article (PubMed ID: 20948997)
1. Discovery of a novel and rich source of gluten-degrading microbial enzymes in the oral cavity. Helmerhorst EJ; Zamakhchari M; Schuppan D; Oppenheim FG PLoS One; 2010 Oct; 5(10):e13264. PubMed ID: 20948997 [TBL] [Abstract][Full Text] [Related]
2. Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. Zamakhchari M; Wei G; Dewhirst F; Lee J; Schuppan D; Oppenheim FG; Helmerhorst EJ PLoS One; 2011; 6(9):e24455. PubMed ID: 21957450 [TBL] [Abstract][Full Text] [Related]
3. Gluten hydrolyzing activity of Bacillus spp isolated from sourdough. Rashmi BS; Gayathri D; Vasudha M; Prashantkumar CS; Swamy CT; Sunil KS; Somaraja PK; Prakash P Microb Cell Fact; 2020 Jun; 19(1):130. PubMed ID: 32532261 [TBL] [Abstract][Full Text] [Related]
4. Salivary Gluten Degradation and Oral Microbial Profiles in Healthy Individuals and Celiac Disease Patients. Tian N; Faller L; Leffler DA; Kelly CP; Hansen J; Bosch JA; Wei G; Paster BJ; Schuppan D; Helmerhorst EJ Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087531 [TBL] [Abstract][Full Text] [Related]
5. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity. Fernandez-Feo M; Wei G; Blumenkranz G; Dewhirst FE; Schuppan D; Oppenheim FG; Helmerhorst EJ Clin Microbiol Infect; 2013 Sep; 19(9):E386-94. PubMed ID: 23714165 [TBL] [Abstract][Full Text] [Related]
6. Identification of Pseudolysin (lasB) as an Aciduric Gluten-Degrading Enzyme with High Therapeutic Potential for Celiac Disease. Wei G; Tian N; Valery AC; Zhong Y; Schuppan D; Helmerhorst EJ Am J Gastroenterol; 2015 Jun; 110(6):899-908. PubMed ID: 25895519 [TBL] [Abstract][Full Text] [Related]
7. A new microbial gluten-degrading prolyl endopeptidase: Potential application in celiac disease to reduce gluten immunogenic peptides. Moreno Amador ML; Arévalo-Rodríguez M; Durán EM; Martínez Reyes JC; Sousa Martín C PLoS One; 2019; 14(6):e0218346. PubMed ID: 31246975 [TBL] [Abstract][Full Text] [Related]
8. Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Wei G; Tian N; Siezen R; Schuppan D; Helmerhorst EJ Am J Physiol Gastrointest Liver Physiol; 2016 Sep; 311(3):G571-80. PubMed ID: 27469368 [TBL] [Abstract][Full Text] [Related]
9. Effect of Rothia mucilaginosa enzymes on gliadin (gluten) structure, deamidation, and immunogenic epitopes relevant to celiac disease. Tian N; Wei G; Schuppan D; Helmerhorst EJ Am J Physiol Gastrointest Liver Physiol; 2014 Oct; 307(8):G769-76. PubMed ID: 25147233 [TBL] [Abstract][Full Text] [Related]
10. The human digestive tract has proteases capable of gluten hydrolysis. Gutiérrez S; Pérez-Andrés J; Martínez-Blanco H; Ferrero MA; Vaquero L; Vivas S; Casqueiro J; Rodríguez-Aparicio LB Mol Metab; 2017 Jul; 6(7):693-702. PubMed ID: 28702325 [TBL] [Abstract][Full Text] [Related]
11. Intestinal T cell responses to gluten peptides are largely heterogeneous: implications for a peptide-based therapy in celiac disease. Camarca A; Anderson RP; Mamone G; Fierro O; Facchiano A; Costantini S; Zanzi D; Sidney J; Auricchio S; Sette A; Troncone R; Gianfrani C J Immunol; 2009 Apr; 182(7):4158-66. PubMed ID: 19299713 [TBL] [Abstract][Full Text] [Related]
12. Human small-intestinal gluten-degrading bacteria and its potential implication in celiac disease. Dewala S; Bodkhe R; Nimonkar Y; Prakash OM; Ahuja V; Makharia GK; Shouche YS J Biosci; 2023; 48():. PubMed ID: 37309172 [TBL] [Abstract][Full Text] [Related]
13. Identification and analysis of multivalent proteolytically resistant peptides from gluten: implications for celiac sprue. Shan L; Qiao SW; Arentz-Hansen H; Molberg Ø; Gray GM; Sollid LM; Khosla C J Proteome Res; 2005; 4(5):1732-41. PubMed ID: 16212427 [TBL] [Abstract][Full Text] [Related]
14. Despite sequence homologies to gluten, salivary proline-rich proteins do not elicit immune responses central to the pathogenesis of celiac disease. Tian N; Leffler DA; Kelly CP; Hansen J; Marietta EV; Murray JA; Schuppan D; Helmerhorst EJ Am J Physiol Gastrointest Liver Physiol; 2015 Dec; 309(11):G910-7. PubMed ID: 26505973 [TBL] [Abstract][Full Text] [Related]
16. The preferred substrates for transglutaminase 2 in a complex wheat gluten digest are Peptide fragments harboring celiac disease T-cell epitopes. Dørum S; Arntzen MØ; Qiao SW; Holm A; Koehler CJ; Thiede B; Sollid LM; Fleckenstein B PLoS One; 2010 Nov; 5(11):e14056. PubMed ID: 21124911 [TBL] [Abstract][Full Text] [Related]
17. Selection of Gut-Resistant Bacteria and Construction of Microbial Consortia for Improving Gluten Digestion under Simulated Gastrointestinal Conditions. De Angelis M; Siragusa S; Vacca M; Di Cagno R; Cristofori F; Schwarm M; Pelzer S; Flügel M; Speckmann B; Francavilla R; Gobbetti M Nutrients; 2021 Mar; 13(3):. PubMed ID: 33808622 [TBL] [Abstract][Full Text] [Related]
18. Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Arentz-Hansen H; McAdam SN; Molberg Ø; Fleckenstein B; Lundin KE; Jørgensen TJ; Jung G; Roepstorff P; Sollid LM Gastroenterology; 2002 Sep; 123(3):803-9. PubMed ID: 12198706 [TBL] [Abstract][Full Text] [Related]
19. Refining the rules of gliadin T cell epitope binding to the disease-associated DQ2 molecule in celiac disease: importance of proline spacing and glutamine deamidation. Qiao SW; Bergseng E; Molberg O; Jung G; Fleckenstein B; Sollid LM J Immunol; 2005 Jul; 175(1):254-61. PubMed ID: 15972656 [TBL] [Abstract][Full Text] [Related]
20. A quantitative analysis of transglutaminase 2-mediated deamidation of gluten peptides: implications for the T-cell response in celiac disease. Dørum S; Qiao SW; Sollid LM; Fleckenstein B J Proteome Res; 2009 Apr; 8(4):1748-55. PubMed ID: 19239248 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]