These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 20949020)

  • 1. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures.
    Gardiner NM; Munday PL; Nilsson GE
    PLoS One; 2010 Oct; 5(10):e13299. PubMed ID: 20949020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures.
    Rummer JL; Couturier CS; Stecyk JA; Gardiner NM; Kinch JP; Nilsson GE; Munday PL
    Glob Chang Biol; 2014 Apr; 20(4):1055-66. PubMed ID: 24281840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecosystem restructuring along the Great Barrier Reef following mass coral bleaching.
    Stuart-Smith RD; Brown CJ; Ceccarelli DM; Edgar GJ
    Nature; 2018 Aug; 560(7716):92-96. PubMed ID: 30046108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variation in growth rates of branching corals along Australia's Great Barrier Reef.
    Anderson KD; Cantin NE; Heron SF; Pisapia C; Pratchett MS
    Sci Rep; 2017 Jun; 7(1):2920. PubMed ID: 28592825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal performance of scleractinian corals along a latitudinal gradient on the Great Barrier Reef.
    Jurriaans S; Hoogenboom MO
    Philos Trans R Soc Lond B Biol Sci; 2019 Aug; 374(1778):20180546. PubMed ID: 31203761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional versus latitudinal variation in the life-history traits and demographic rates of a reef fish, Centropyge bispinosa, in the Coral Sea and Great Barrier Reef Marine Parks, Australia.
    Lowe JR; Payet SD; Harrison HB; Hobbs JA; Hoey AS; Taylor BM; Sinclair-Taylor TH; Pratchett MS
    J Fish Biol; 2021 Nov; 99(5):1602-1612. PubMed ID: 34331333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adapt, move or die - how will tropical coral reef fishes cope with ocean warming?
    Habary A; Johansen JL; Nay TJ; Steffensen JF; Rummer JL
    Glob Chang Biol; 2017 Feb; 23(2):566-577. PubMed ID: 27593976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of increased ocean temperatures on a low-latitude coral reef fish - Processes related to oxygen uptake and delivery.
    Rodgers GG; Rummer JL; Johnson LK; McCormick MI
    J Therm Biol; 2019 Jan; 79():95-102. PubMed ID: 30612692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes.
    Nilsson GE; Ostlund-Nilsson S
    Proc Biol Sci; 2004 Feb; 271 Suppl 3(Suppl 3):S30-3. PubMed ID: 15101411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future?
    Munday PL; McCormick MI; Nilsson GE
    J Exp Biol; 2012 Nov; 215(Pt 22):3865-73. PubMed ID: 23100485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A large predatory reef fish species moderates feeding and activity patterns in response to seasonal and latitudinal temperature variation.
    Scott M; Heupel M; Tobin A; Pratchett M
    Sci Rep; 2017 Oct; 7(1):12966. PubMed ID: 29021605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate.
    Nilsson GE; Ostlund-Nilsson S; Munday PL
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Aug; 156(4):389-93. PubMed ID: 20233610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulate or tolerate: Thermal strategy of a coral reef flat resident, the epaulette shark, Hemiscyllium ocellatum.
    Nay TJ; Longbottom RJ; Gervais CR; Johansen JL; Steffensen JF; Rummer JL; Hoey AS
    J Fish Biol; 2021 Mar; 98(3):723-732. PubMed ID: 33206373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of water temperature on the juvenile performance of two tropical damselfishes expatriating to temperate reefs.
    Djurichkovic LD; Donelson JM; Fowler AM; Feary DA; Booth DJ
    Sci Rep; 2019 Sep; 9(1):13937. PubMed ID: 31558794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Habitat complexity influences selection of thermal environment in a common coral reef fish.
    Nay TJ; Johansen JL; Rummer JL; Steffensen JF; Pratchett MS; Hoey AS
    Conserv Physiol; 2020; 8(1):coaa070. PubMed ID: 32864133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct and indirect effects of heatwaves on a coral reef fishery.
    Brown CJ; Mellin C; Edgar GJ; Campbell MD; Stuart-Smith RD
    Glob Chang Biol; 2021 Mar; 27(6):1214-1225. PubMed ID: 33340216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing life stage-specific effects of ocean warming at source and sink populations of range-shifting coral-reef fishes.
    Monaco CJ; Nagelkerken I; Booth DJ; Figueira WF; Gillanders BM; Schoeman DS; Bradshaw CJA
    J Anim Ecol; 2021 Mar; 90(3):615-627. PubMed ID: 33232514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting effects of constant and fluctuating pCO
    Hannan KD; McMahon SJ; Munday PL; Rummer JL
    Mar Environ Res; 2021 Jan; 163():105224. PubMed ID: 33316710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential for adaptation to climate change in a coral reef fish.
    Munday PL; Donelson JM; Domingos JA
    Glob Chang Biol; 2017 Jan; 23(1):307-317. PubMed ID: 27469983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Range-extending coral reef fishes trade-off growth for maintenance of body condition in cooler waters.
    Kingsbury KM; Gillanders BM; Booth DJ; Coni EOC; Nagelkerken I
    Sci Total Environ; 2020 Feb; 703():134598. PubMed ID: 31767323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.