BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 20949106)

  • 1. Tight regulation of the intS gene of the KplE1 prophage: a new paradigm for integrase gene regulation.
    Panis G; Duverger Y; Courvoisier-Dezord E; Champ S; Talla E; Ansaldi M
    PLoS Genet; 2010 Oct; 6(10):. PubMed ID: 20949106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein binding sites involved in the assembly of the KplE1 prophage intasome.
    Panis G; Duverger Y; Champ S; Ansaldi M
    Virology; 2010 Aug; 404(1):41-50. PubMed ID: 20494389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the functions of a prophage recombination directionality factor.
    Panis G; Franche N; Méjean V; Ansaldi M
    Viruses; 2012 Oct; 4(11):2417-31. PubMed ID: 23202488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control and regulation of KplE1 prophage site-specific recombination: a new recombination module analyzed.
    Panis G; Méjean V; Ansaldi M
    J Biol Chem; 2007 Jul; 282(30):21798-809. PubMed ID: 17545146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recombination directionality factor gp3 binds ϕC31 integrase via the zinc domain, potentially affecting the trajectory of the coiled-coil motif.
    Fogg PCM; Younger E; Fernando BD; Khaleel T; Stark WM; Smith MCM
    Nucleic Acids Res; 2018 Feb; 46(3):1308-1320. PubMed ID: 29228292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of the Serine Integrase Reaction: Roles of the Coiled-Coil and Helix E Regions in DNA Site Synapsis and Recombination.
    Mandali S; Johnson RC
    J Bacteriol; 2021 Jul; 203(16):e0070320. PubMed ID: 34060907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of Recombination Directionality by the Listeria Phage A118 Protein Gp44 and the Coiled-Coil Motif of Its Serine Integrase.
    Mandali S; Gupta K; Dawson AR; Van Duyne GD; Johnson RC
    J Bacteriol; 2017 Jun; 199(11):. PubMed ID: 28289084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome Integration and Excision by a New Streptomyces Bacteriophage, ϕJoe.
    Fogg PCM; Haley JA; Stark WM; Smith MCM
    Appl Environ Microbiol; 2017 Mar; 83(5):. PubMed ID: 28003200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration and excision by the large serine recombinase phiRv1 integrase.
    Bibb LA; Hancox MI; Hatfull GF
    Mol Microbiol; 2005 Mar; 55(6):1896-910. PubMed ID: 15752208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A phage protein that binds φC31 integrase to switch its directionality.
    Khaleel T; Younger E; McEwan AR; Varghese AS; Smith MC
    Mol Microbiol; 2011 Jun; 80(6):1450-63. PubMed ID: 21564337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutting out the φC31 prophage.
    Stark WM
    Mol Microbiol; 2011 Jun; 80(6):1417-9. PubMed ID: 21564340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific recombination of temperate Myxococcus xanthus phage Mx8: regulation of integrase activity by reversible, covalent modification.
    Magrini V; Storms ML; Youderian P
    J Bacteriol; 1999 Jul; 181(13):4062-70. PubMed ID: 10383975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of serine integrase recombination directionality by fusion with the directionality factor.
    Olorunniji FJ; McPherson AL; Rosser SJ; Smith MCM; Colloms SD; Stark WM
    Nucleic Acids Res; 2017 Aug; 45(14):8635-8645. PubMed ID: 28666339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of multiple integration sites for Stx-phage Phi24B in the Escherichia coli genome, description of a novel integrase and evidence for a functional anti-repressor.
    Fogg PCM; Gossage SM; Smith DL; Saunders JR; McCarthy AJ; Allison HE
    Microbiology (Reading); 2007 Dec; 153(Pt 12):4098-4110. PubMed ID: 18048923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metagenomic analysis of lysogeny in Tampa Bay: implications for prophage gene expression.
    McDaniel L; Breitbart M; Mobberley J; Long A; Haynes M; Rohwer F; Paul JH
    PLoS One; 2008 Sep; 3(9):e3263. PubMed ID: 18810270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins.
    Lewis JA; Hatfull GF
    Nucleic Acids Res; 2001 Jun; 29(11):2205-16. PubMed ID: 11376138
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Bacillus subtilis vector, pSSβ, as genetic tool for site-specific integration and excision of cloned DNA, and prophage elimination.
    Suzuki S; Osada S; Imamura D; Sato T
    J Gen Appl Microbiol; 2022 Sep; 68(2):71-78. PubMed ID: 35387911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling.
    Pokhilko A; Zhao J; Ebenhöh O; Smith MC; Stark WM; Colloms SD
    Nucleic Acids Res; 2016 Sep; 44(15):7360-72. PubMed ID: 27387286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteriophage tRNA-dependent lysogeny: requirement of phage-encoded tRNA genes for establishment of lysogeny.
    Guerrero-Bustamante CA; Hatfull GF
    mBio; 2024 Feb; 15(2):e0326023. PubMed ID: 38236026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-talk between diverse serine integrases.
    Singh S; Rockenbach K; Dedrick RM; VanDemark AP; Hatfull GF
    J Mol Biol; 2014 Jan; 426(2):318-31. PubMed ID: 24161951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.