These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20949199)

  • 1. Predicting conserved essential genes in bacteria: in silico identification of putative drug targets.
    Duffield M; Cooper I; McAlister E; Bayliss M; Ford D; Oyston P
    Mol Biosyst; 2010 Dec; 6(12):2482-9. PubMed ID: 20949199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. T-iDT : tool for identification of drug target in bacteria and validation by Mycobacterium tuberculosis.
    Singh NK; Selvam SM; Chakravarthy P
    In Silico Biol; 2006; 6(6):485-93. PubMed ID: 17518759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biocomputational strategies for microbial drug target identification.
    Sakharkar KR; Sakharkar MK; Chow VT
    Methods Mol Med; 2008; 142():1-9. PubMed ID: 18437301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico identification of putative drug targets from different metabolic pathways of Aeromonas hydrophila.
    Sharma V; Gupta P; Dixit A
    In Silico Biol; 2008; 8(3-4):331-8. PubMed ID: 19032165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of essential genes in Streptococcus pneumoniae using bioinformatics and allelic replacement mutagenesis.
    Song JH; Ko KS
    Methods Mol Biol; 2008; 416():401-8. PubMed ID: 18392984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome scale comparative modeling for conserved drug and vaccine targets identification in Corynebacterium pseudotuberculosis.
    Hassan SS; Tiwari S; Guimarães LC; Jamal SB; Folador E; Sharma NB; de Castro Soares S; Almeida S; Ali A; Islam A; Póvoa FD; de Abreu VA; Jain N; Bhattacharya A; Juneja L; Miyoshi A; Silva A; Barh D; Turjanski A; Azevedo V; Ferreira RS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S3. PubMed ID: 25573232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene essentiality analysis based on DEG, a database of essential genes.
    Zhang CT; Zhang R
    Methods Mol Biol; 2008; 416():391-400. PubMed ID: 18392983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How essential are nonessential genes?
    Fang G; Rocha E; Danchin A
    Mol Biol Evol; 2005 Nov; 22(11):2147-56. PubMed ID: 16014871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction network containing conserved and essential protein complexes in Escherichia coli.
    Butland G; Peregrín-Alvarez JM; Li J; Yang W; Yang X; Canadien V; Starostine A; Richards D; Beattie B; Krogan N; Davey M; Parkinson J; Greenblatt J; Emili A
    Nature; 2005 Feb; 433(7025):531-7. PubMed ID: 15690043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for predicting bacterial protein subcellular localization.
    Gardy JL; Brinkman FS
    Nat Rev Microbiol; 2006 Oct; 4(10):741-51. PubMed ID: 16964270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of novel essential Escherichia coli genes conserved among pathogenic bacteria.
    Freiberg C; Wieland B; Spaltmann F; Ehlert K; Brötz H; Labischinski H
    J Mol Microbiol Biotechnol; 2001 Jul; 3(3):483-9. PubMed ID: 11361082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prioritizing drug targets in Clostridium botulinum with a computational systems biology approach.
    Muhammad SA; Ahmed S; Ali A; Huang H; Wu X; Yang XF; Naz A; Chen J
    Genomics; 2014 Jul; 104(1):24-35. PubMed ID: 24837790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential genes as antimicrobial targets and cornerstones of synthetic biology.
    Juhas M; Eberl L; Church GM
    Trends Biotechnol; 2012 Nov; 30(11):601-7. PubMed ID: 22951051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mycoplasma genitalium: a comparative genomics study of metabolic pathways for the identification of drug and vaccine targets.
    Butt AM; Tahir S; Nasrullah I; Idrees M; Lu J; Tong Y
    Infect Genet Evol; 2012 Jan; 12(1):53-62. PubMed ID: 22057004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis.
    Biswas S; Raoult D; Rolain JM
    Int J Antimicrob Agents; 2008 Sep; 32(3):207-20. PubMed ID: 18619818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEG: a database of essential genes.
    Zhang R; Ou HY; Zhang CT
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D271-2. PubMed ID: 14681410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical methods for identifying important functional genes in bacterial genomes.
    Gao J; Chen LL
    Res Microbiol; 2010; 161(1):1-8. PubMed ID: 19900539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial targets and antibiotics: genome-based drug discovery.
    Gray CP; Keck W
    Cell Mol Life Sci; 1999 Nov; 56(9-10):779-87. PubMed ID: 11212338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary conservation analysis between the essential and nonessential genes in bacterial genomes.
    Luo H; Gao F; Lin Y
    Sci Rep; 2015 Aug; 5():13210. PubMed ID: 26272053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivering novel targets and antibiotics from genomics.
    Payne DJ; Holmes DJ; Rosenberg M
    Curr Opin Investig Drugs; 2001 Aug; 2(8):1028-34. PubMed ID: 11892909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.