These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 20949215)

  • 1. Chemical genetics approach to identify new small molecule modulators of cell growth by phenotypic screening of Saccharomyces cerevisiae strains with a library of morpholine-derived compounds.
    Trabocchi A; Stefanini I; Morvillo M; Ciofi L; Cavalieri D; Guarna A
    Org Biomol Chem; 2010 Dec; 8(24):5552-7. PubMed ID: 20949215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncovering genetic relationships using small molecules that selectively target yeast cell cycle mutants.
    Nehil MT; Tamble CM; Combs DJ; Kellogg DR; Lokey RS
    Chem Biol Drug Des; 2007 Apr; 69(4):258-64. PubMed ID: 17461973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput and sensitive assay to measure yeast cell growth: a bench protocol for testing genotoxic agents.
    Toussaint M; Conconi A
    Nat Protoc; 2006; 1(4):1922-8. PubMed ID: 17487177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput cell-based screening of 4910 known drugs and drug-like small molecules identifies disulfiram as an inhibitor of prostate cancer cell growth.
    Iljin K; Ketola K; Vainio P; Halonen P; Kohonen P; Fey V; Grafström RC; Perälä M; Kallioniemi O
    Clin Cancer Res; 2009 Oct; 15(19):6070-8. PubMed ID: 19789329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast genomics and proteomics in drug discovery and target validation.
    Parsons AB; Geyer R; Hughes TR; Boone C
    Prog Cell Cycle Res; 2003; 5():159-66. PubMed ID: 14593709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating high-content screening and ligand-target prediction to identify mechanism of action.
    Young DW; Bender A; Hoyt J; McWhinnie E; Chirn GW; Tao CY; Tallarico JA; Labow M; Jenkins JL; Mitchison TJ; Feng Y
    Nat Chem Biol; 2008 Jan; 4(1):59-68. PubMed ID: 18066055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic basis of individual differences in the response to small-molecule drugs in yeast.
    Perlstein EO; Ruderfer DM; Roberts DC; Schreiber SL; Kruglyak L
    Nat Genet; 2007 Apr; 39(4):496-502. PubMed ID: 17334364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioactivity-guided navigation of chemical space.
    Bon RS; Waldmann H
    Acc Chem Res; 2010 Aug; 43(8):1103-14. PubMed ID: 20481515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel synthesis and yeast growth inhibition screening of succinamic acid libraries.
    Serrano P; Casas J; Llebaria A; Zucco M; Emeric G; Delgado A
    J Comb Chem; 2007; 9(4):635-43. PubMed ID: 17536867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Applications of chemical genetics in biomedical research].
    Jing Q; Zhao J; Zhao B; Zhang S; Miao J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):448-51. PubMed ID: 19499823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast as a tool to identify anti-aging compounds.
    Zimmermann A; Hofer S; Pendl T; Kainz K; Madeo F; Carmona-Gutierrez D
    FEMS Yeast Res; 2018 Sep; 18(6):. PubMed ID: 29905792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants.
    Zúñiga S; Boskovic J; Jiménez A; Ballesta JP; Remacha M
    Yeast; 1999 Jul; 15(10B):945-53. PubMed ID: 10407274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitors of human indoleamine 2,3-dioxygenase identified with a target-based screen in yeast.
    Vottero E; Balgi A; Woods K; Tugendreich S; Melese T; Andersen RJ; Mauk AG; Roberge M
    Biotechnol J; 2006 Mar; 1(3):282-8. PubMed ID: 16897708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Yeast/Drosophila Screen to Identify New Compounds Overcoming Frataxin Deficiency.
    Seguin A; Monnier V; Palandri A; Bihel F; Rera M; Schmitt M; Camadro JM; Tricoire H; Lesuisse E
    Oxid Med Cell Longev; 2015; 2015():565140. PubMed ID: 26523199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Mapping of Chemical-Genetic Interactions in Saccharomyces cerevisiae.
    Suresh S; Schlecht U; Xu W; Bray W; Miranda M; Davis RW; Nislow C; Giaever G; Lokey RS; St Onge RP
    Cold Spring Harb Protoc; 2016 Sep; 2016(9):. PubMed ID: 27587783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The emerging field of chemical genetics: potential applications for pesticide discovery.
    Walsh TA
    Pest Manag Sci; 2007 Dec; 63(12):1165-71. PubMed ID: 17912687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yeast as a tool for characterizing mono-ADP-ribosyltransferase toxins.
    Turgeon Z; White D; Jørgensen R; Visschedyk D; Fieldhouse RJ; Mangroo D; Merrill AR
    FEMS Microbiol Lett; 2009 Nov; 300(1):97-106. PubMed ID: 19793133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-throughput method to measure the sensitivity of yeast cells to genotoxic agents in liquid cultures.
    Toussaint M; Levasseur G; Gervais-Bird J; Wellinger RJ; Elela SA; Conconi A
    Mutat Res; 2006 Jul; 606(1-2):92-105. PubMed ID: 16713735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae.
    Weiss A; Delproposto J; Giroux CN
    Anal Biochem; 2004 Apr; 327(1):23-34. PubMed ID: 15033507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The automated cell: compound and environment screening system (ACCESS) for chemogenomic screening.
    Proctor M; Urbanus ML; Fung EL; Jaramillo DF; Davis RW; Nislow C; Giaever G
    Methods Mol Biol; 2011; 759():239-69. PubMed ID: 21863492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.