These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 20949259)
21. Micro Raman spectroscopy used for the study of corrosion products on copper alloys: study of the chemical composition of artificial patinas used for restoration purposes. Hayez V; Costa V; Guillaume J; Terryn H; Hubin A Analyst; 2005 Apr; 130(4):550-6. PubMed ID: 15776167 [TBL] [Abstract][Full Text] [Related]
22. Protective treatments for copper alloy artworks: preliminary studies of sodium oxalate and limewater effectiveness against bronze disease. Monari G; Galeotti M; Matteini M; Salvadori B; Stifanese R; Traverso P; Vettori S; Letardi P Environ Sci Pollut Res Int; 2023 Feb; 30(10):27441-27457. PubMed ID: 36385333 [TBL] [Abstract][Full Text] [Related]
23. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy. Monico L; Rosi F; Miliani C; Daveri A; Brunetti BG Spectrochim Acta A Mol Biomol Spectrosc; 2013 Dec; 116():270-80. PubMed ID: 23954542 [TBL] [Abstract][Full Text] [Related]
24. Weathering patinas on the medieval (S. XIV) stained glass windows of the Pedralbes Monastery (Barcelona, Spain). Aulinas M; Garcia-Valles M; Gimeno D; Fernandez-Turiel JL; Ruggieri F; Pugès M Environ Sci Pollut Res Int; 2009 Jun; 16(4):443-52. PubMed ID: 19104870 [TBL] [Abstract][Full Text] [Related]
25. Colored inks analysis and differentiation: a first step in artistic contemporary prints discrimination. Vila A; Ferrer N; García JF Anal Chim Acta; 2007 Apr; 588(1):96-107. PubMed ID: 17386798 [TBL] [Abstract][Full Text] [Related]
26. Probing history with Raman spectroscopy. Edwards HG Analyst; 2004 Oct; 129(10):870-9. PubMed ID: 15457313 [TBL] [Abstract][Full Text] [Related]
27. The effect of uric acid on outdoor copper and bronze. Bernardi E; Bowden DJ; Brimblecombe P; Kenneally H; Morselli L Sci Total Environ; 2009 Mar; 407(7):2383-9. PubMed ID: 19157513 [TBL] [Abstract][Full Text] [Related]
28. Metallographic approach to the investigation of metallic archaeological objects. Pinasco MR; Ienco MG; Piccardo P; Pellati G; Stagno E Ann Chim; 2007 Jul; 97(7):553-74. PubMed ID: 17867539 [TBL] [Abstract][Full Text] [Related]
29. Unlocking the organic residues preserved in the corrosion from the Pewsey Hoard vessels. Carvalho LDC; Henry R; McCullagh JSO; Pollard AM Sci Rep; 2022 Dec; 12(1):21284. PubMed ID: 36494389 [TBL] [Abstract][Full Text] [Related]
30. [WET-MODE SCANNING ELECTRON MICROSCOPY AS AN INSTRUMENT FOR STUDIES OF BIOGEOCHEMICAL PROCESSES OF FUNGAL BIOMINERALS FORMATION]. Fomina MA; Podgorsky VS Mikrobiol Z; 2015; 77(3):9-15. PubMed ID: 26214893 [TBL] [Abstract][Full Text] [Related]
31. Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Bertolotti G; Bersani D; Lottici PP; Alesiani M; Malcherek T; Schlüter J Anal Bioanal Chem; 2012 Feb; 402(4):1451-7. PubMed ID: 21805316 [TBL] [Abstract][Full Text] [Related]
32. Electrochemical Age Determinations of Metallic Specimens-Utilization of the Corrosion Clock. Doménech-Carbó A; Scholz F Acc Chem Res; 2019 Feb; 52(2):400-406. PubMed ID: 30615439 [TBL] [Abstract][Full Text] [Related]
34. New advances in the application of FTIR microscopy and spectroscopy for the characterization of artistic materials. Prati S; Joseph E; Sciutto G; Mazzeo R Acc Chem Res; 2010 Jun; 43(6):792-801. PubMed ID: 20476733 [TBL] [Abstract][Full Text] [Related]
35. Corrosion of Bronzes by Extended Wetting with Single Gianni L; Gigante GE; Cavallini M; Adriaens A Materials (Basel); 2014 Apr; 7(5):3353-3370. PubMed ID: 28788622 [TBL] [Abstract][Full Text] [Related]
36. Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age. Cosano D; Esquivel D; Mateos LD; Quesada F; Jiménez-Sanchidrián C; Ruiz JR Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():489-496. PubMed ID: 30059875 [TBL] [Abstract][Full Text] [Related]
37. Laser-induced fluorescence and FT-Raman spectroscopy for characterizing patinas on stone substrates. Oujja M; Vázquez-Calvo C; Sanz M; Álvarez de Buergo M; Fort R; Castillejo M Anal Bioanal Chem; 2012 Feb; 402(4):1433-41. PubMed ID: 21866402 [TBL] [Abstract][Full Text] [Related]
38. The impact of urban rain on the changes of bare and artificially patinated bronze during 9-year exposure. Kosec T; Leban MB; Ropret P; Finšgar M Environ Sci Pollut Res Int; 2024 May; 31(22):31925-31941. PubMed ID: 38641690 [TBL] [Abstract][Full Text] [Related]
39. The impact of aqueous washing on the ability of βFeOOH to corrode iron. Watkinson DE; Emmerson NJ Environ Sci Pollut Res Int; 2017 Jan; 24(3):2138-2149. PubMed ID: 27164877 [TBL] [Abstract][Full Text] [Related]
40. Microstructure, hardness, corrosion resistance and porcelain shear bond strength comparison between cast and hot pressed CoCrMo alloy for metal-ceramic dental restorations. Henriques B; Soares D; Silva FS J Mech Behav Biomed Mater; 2012 Aug; 12():83-92. PubMed ID: 22659369 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]