These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Metaxa E; Tremmel M; Natarajan SK; Xiang J; Paluch RA; Mandelbaum M; Siddiqui AH; Kolega J; Mocco J; Meng H Stroke; 2010 Aug; 41(8):1774-82. PubMed ID: 20595660 [TBL] [Abstract][Full Text] [Related]
3. In vivo assessment of rapid cerebrovascular morphological adaptation following acute blood flow increase. Hoi Y; Gao L; Tremmel M; Paluch RA; Siddiqui AH; Meng H; Mocco J J Neurosurg; 2008 Dec; 109(6):1141-7. PubMed ID: 19035734 [TBL] [Abstract][Full Text] [Related]
4. Cellular and molecular responses of the basilar terminus to hemodynamics during intracranial aneurysm initiation in a rabbit model. Kolega J; Gao L; Mandelbaum M; Mocco J; Siddiqui AH; Natarajan SK; Meng H J Vasc Res; 2011; 48(5):429-42. PubMed ID: 21625176 [TBL] [Abstract][Full Text] [Related]
5. Nascent aneurysm formation at the basilar terminus induced by hemodynamics. Gao L; Hoi Y; Swartz DD; Kolega J; Siddiqui A; Meng H Stroke; 2008 Jul; 39(7):2085-90. PubMed ID: 18451348 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Vascular Geometry for Bilateral Carotid Artery Ligation to Induce Early Basilar Terminus Aneurysmal Remodeling in Rats. Tutino VM; Liaw N; Spernyak JA; Ionita CN; Siddiqui AH; Kolega J; Meng H Curr Neurovasc Res; 2016; 13(1):82-92. PubMed ID: 26503026 [TBL] [Abstract][Full Text] [Related]
8. Role of Kruppel-like Factor 2 in Intracranial Aneurysm of the Rabbit Model. Wu X; Zhang J; Huang Q; Yang P; Chen J; Liu J Cell Mol Biol (Noisy-le-grand); 2015 Nov; 61(7):33-9. PubMed ID: 26567602 [TBL] [Abstract][Full Text] [Related]
9. Hypertension and Estrogen Deficiency Augment Aneurysmal Remodeling in the Rabbit Circle of Willis in Response to Carotid Ligation. Tutino VM; Mandelbaum M; Takahashi A; Pope LC; Siddiqui A; Kolega J; Meng H Anat Rec (Hoboken); 2015 Nov; 298(11):1903-10. PubMed ID: 26248728 [TBL] [Abstract][Full Text] [Related]
10. Experience with microaneurysm formation at the basilar terminus in the rabbit elastase aneurysm model. Dai D; Ding YH; Kadirvel R; Lewis DA; Kallmes DF AJNR Am J Neuroradiol; 2010 Feb; 31(2):300-3. PubMed ID: 19797794 [TBL] [Abstract][Full Text] [Related]
11. The role of sympathectomy on the regulation of basilar artery volume changes in stenoocclusive carotid artery modeling after bilateral common carotid artery ligation: an animal model. Eseoglu M; Yilmaz I; Karalar M; Aydin MD; Kayaci S; Gundogdu C; Gunaldi O; Onen MR Acta Neurochir (Wien); 2014 May; 156(5):963-9. PubMed ID: 24557449 [TBL] [Abstract][Full Text] [Related]
12. Arterial wall degeneration plus hemodynamic insult cause arterial wall remodeling and nascent aneurysm formation at specific sites in dogs. Zhu YQ; Li MH; Yan L; Tan HQ; Cheng YS J Neuropathol Exp Neurol; 2014 Sep; 73(9):808-19. PubMed ID: 25111020 [TBL] [Abstract][Full Text] [Related]
13. Role of the trigeminal system on posterior communicating artery remodelization after bilateral common carotid artery ligation. Aygul R; Aydin MD; Kotan D; Demir R; Ulvi H; Karalar M; Nalbantoglu NG; Eseoglu M Anal Quant Cytopathol Histpathol; 2013 Aug; 35(4):217-25. PubMed ID: 24341125 [TBL] [Abstract][Full Text] [Related]
14. Complex hemodynamic insult in combination with wall degeneration at the apex of an arterial bifurcation contributes to generation of nascent aneurysms in a canine model. Wang J; Tan HQ; Zhu YQ; Li MH; Li ZZ; Yan L; Cheng YS AJNR Am J Neuroradiol; 2014 Sep; 35(9):1805-12. PubMed ID: 24788130 [TBL] [Abstract][Full Text] [Related]
15. Flow-induced, inflammation-mediated arterial wall remodeling in the formation and progression of intracranial aneurysms. Frösen J; Cebral J; Robertson AM; Aoki T Neurosurg Focus; 2019 Jul; 47(1):E21. PubMed ID: 31261126 [TBL] [Abstract][Full Text] [Related]
16. Pathology of the arteries in the central nervous system with special reference to their dilatation: blood flow. Masuda H; Sugita A; Zhuang YJ Neuropathology; 2000 Mar; 20(1):98-103. PubMed ID: 10935446 [TBL] [Abstract][Full Text] [Related]
17. A critical role for proinflammatory behavior of smooth muscle cells in hemodynamic initiation of intracranial aneurysm. Mandelbaum M; Kolega J; Dolan JM; Siddiqui AH; Meng H PLoS One; 2013; 8(9):e74357. PubMed ID: 24023941 [TBL] [Abstract][Full Text] [Related]
18. The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms. Zhang X; Yao ZQ; Karuna T; He XY; Wang XM; Li XF; Liu WC; Li R; Guo SQ; Chen YC; Li GC; Duan CZ Eur Radiol; 2019 Feb; 29(2):689-698. PubMed ID: 30019140 [TBL] [Abstract][Full Text] [Related]
19. 9.4T Magnetic Resonance Imaging of the Mouse Circle of Willis Enables Serial Characterization of Flow-Induced Vascular Remodeling by Computational Fluid Dynamics. Tutino VM; Rajabzadeh-Oghaz H; Chandra AR; Gutierrez LC; Schweser F; Preda M; Chien A; Vakharia K; Ionita C; Siddiqui A; Kolega J Curr Neurovasc Res; 2018; 15(4):312-325. PubMed ID: 30484404 [TBL] [Abstract][Full Text] [Related]
20. Role of Vascular Endothelial-Cadherin and p120-Catenin in the Formation of Experimental Intracranial Aneurysm in Animals. Xiao ZP; Zhao JL; Rong WL; Jiang JW; Li MH World Neurosurg; 2019 Aug; 128():e177-e184. PubMed ID: 30995547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]