BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20950270)

  • 1. The structure of CYP101D2 unveils a potential path for substrate entry into the active site.
    Yang W; Bell SG; Wang H; Zhou W; Bartlam M; Wong LL; Rao Z
    Biochem J; 2011 Jan; 433(1):85-93. PubMed ID: 20950270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural evidence for a functionally relevant second camphor binding site in P450cam: model for substrate entry into a P450 active site.
    Yao H; McCullough CR; Costache AD; Pullela PK; Sem DS
    Proteins; 2007 Oct; 69(1):125-38. PubMed ID: 17598143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural Analysis of CYP101C1 from Novosphingobium aromaticivorans DSM12444.
    Ma M; Bell SG; Yang W; Hao Y; Rees NH; Bartlam M; Zhou W; Wong LL; Rao Z
    Chembiochem; 2011 Jan; 12(1):88-99. PubMed ID: 21154803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving the affinity and activity of CYP101D2 for hydrophobic substrates.
    Bell SG; Yang W; Dale A; Zhou W; Wong LL
    Appl Microbiol Biotechnol; 2013 May; 97(9):3979-90. PubMed ID: 22820521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam.
    Bell SG; Chen X; Sowden RJ; Xu F; Williams JN; Wong LL; Rao Z
    J Am Chem Soc; 2003 Jan; 125(3):705-14. PubMed ID: 12526670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of camphor in the cytochrome P450 CYP101D2.
    Vohra S; Musgaard M; Bell SG; Wong LL; Zhou W; Biggin PC
    Protein Sci; 2013 Sep; 22(9):1218-29. PubMed ID: 23832606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):813-30. PubMed ID: 11061977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial Opening of Cytochrome P450cam (CYP101A1) Is Driven by Allostery and Putidaredoxin Binding.
    Skinner SP; Follmer AH; Ubbink M; Poulos TL; Houwing-Duistermaat JJ; Paci E
    Biochemistry; 2021 Oct; 60(39):2932-2942. PubMed ID: 34519197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unexpected Differences between Two Closely Related Bacterial P450 Camphor Monooxygenases.
    Murarka VC; Batabyal D; Amaya JA; Sevrioukova IF; Poulos TL
    Biochemistry; 2020 Jul; 59(29):2743-2750. PubMed ID: 32551522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of CYP108D1 from Novosphingobium aromaticivorans DSM12444: an aromatic hydrocarbon-binding P450 enzyme.
    Bell SG; Yang W; Yorke JA; Zhou W; Wang H; Harmer J; Copley R; Zhang A; Zhou R; Bartlam M; Rao Z; Wong LL
    Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):277-91. PubMed ID: 22349230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P450 enzymes from the bacterium Novosphingobium aromaticivorans.
    Bell SG; Wong LL
    Biochem Biophys Res Commun; 2007 Aug; 360(3):666-72. PubMed ID: 17618912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cytochrome P450 class I electron transfer system from Novosphingobium aromaticivorans.
    Bell SG; Dale A; Rees NH; Wong LL
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):163-75. PubMed ID: 19779713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of mutations in cytochrome P450cam designed to mimic CYP101D1.
    Batabyal D; Li H; Poulos TL
    Biochemistry; 2013 Aug; 52(32):5396-402. PubMed ID: 23865948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s.
    Batabyal D; Lewis-Ballester A; Yeh SR; Poulos TL
    Biochemistry; 2016 Nov; 55(47):6517-6523. PubMed ID: 27808504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris.
    Bell SG; Xu F; Forward I; Bartlam M; Rao Z; Wong LL
    J Mol Biol; 2008 Nov; 383(3):561-74. PubMed ID: 18762195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-Dependent Allosteric Regulation in Cytochrome P450cam (CYP101A1).
    Follmer AH; Mahomed M; Goodin DB; Poulos TL
    J Am Chem Soc; 2018 Nov; 140(47):16222-16228. PubMed ID: 30376314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. P450cam visits an open conformation in the absence of substrate.
    Lee YT; Wilson RF; Rupniewski I; Goodin DB
    Biochemistry; 2010 Apr; 49(16):3412-9. PubMed ID: 20297780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Infrared spectroscopic and mutational studies on putidaredoxin-induced conformational changes in ferrous CO-P450cam.
    Nagano S; Shimada H; Tarumi A; Hishiki T; Kimata-Ariga Y; Egawa T; Suematsu M; Park SY; Adachi S; Shiro Y; Ishimura Y
    Biochemistry; 2003 Dec; 42(49):14507-14. PubMed ID: 14661963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.