These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 20950334)

  • 1. Nicotine and cotinine increases the brain penetration of saquinavir in rat.
    Manda VK; Mittapalli RK; Bohn KA; Adkins CE; Lockman PR
    J Neurochem; 2010 Dec; 115(6):1495-507. PubMed ID: 20950334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic exposure to nicotine and saquinavir decreases endothelial Notch-4 expression and disrupts blood-brain barrier integrity.
    Manda VK; Mittapalli RK; Geldenhuys WJ; Lockman PR
    J Neurochem; 2010 Oct; 115(2):515-25. PubMed ID: 20722969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic nicotine exposure alters blood-brain barrier permeability and diminishes brain uptake of methyllycaconitine.
    Lockman PR; Van der Schyf CJ; Abbruscato TJ; Allen DD
    J Neurochem; 2005 Jul; 94(1):37-44. PubMed ID: 15953347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. P-glycoprotein and mutlidrug resistance-associated proteins limit the brain uptake of saquinavir in mice.
    Park S; Sinko PJ
    J Pharmacol Exp Ther; 2005 Mar; 312(3):1249-56. PubMed ID: 15528451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evasion of P-gp mediated cellular efflux and permeability enhancement of HIV-protease inhibitor saquinavir by prodrug modification.
    Jain R; Agarwal S; Majumdar S; Zhu X; Pal D; Mitra AK
    Int J Pharm; 2005 Oct; 303(1-2):8-19. PubMed ID: 16137847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The disposition of saquinavir in normal and P-glycoprotein deficient mice, rats, and in cultured cells.
    Washington CB; Wiltshire HR; Man M; Moy T; Harris SR; Worth E; Weigl P; Liang Z; Hall D; Marriott L; Blaschke TF
    Drug Metab Dispos; 2000 Sep; 28(9):1058-62. PubMed ID: 10950849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of P-glycoprotein transport activity in the mouse blood-brain barrier by rifampin.
    Zong J; Pollack GM
    J Pharmacol Exp Ther; 2003 Aug; 306(2):556-62. PubMed ID: 12721332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromagnetic interference in the permeability of saquinavir across the blood-brain barrier using nanoparticulate carriers.
    Kuo YC; Kuo CY
    Int J Pharm; 2008 Mar; 351(1-2):271-81. PubMed ID: 17976933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. P-glycoprotein does not actively transport nicotine and cotinine.
    Wang JS; Markowitz JS; Donovan JL; Devane CL
    Addict Biol; 2005 Jun; 10(2):127-9. PubMed ID: 16191663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S; Deli MA; Kawaguchi H; Shimizudani T; Shimono T; Kittel A; Tanaka K; Niwa M
    Neurochem Int; 2009; 54(3-4):253-63. PubMed ID: 19111869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain uptake kinetics of nicotine and cotinine after chronic nicotine exposure.
    Lockman PR; McAfee G; Geldenhuys WJ; Van der Schyf CJ; Abbruscato TJ; Allen DD
    J Pharmacol Exp Ther; 2005 Aug; 314(2):636-42. PubMed ID: 15845856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro primary human and animal cell-based blood-brain barrier models as a screening tool in drug discovery.
    Lacombe O; Videau O; Chevillon D; Guyot AC; Contreras C; Blondel S; Nicolas L; Ghettas A; Bénech H; Thevenot E; Pruvost A; Bolze S; Krzaczkowski L; Prévost C; Mabondzo A
    Mol Pharm; 2011 Jun; 8(3):651-63. PubMed ID: 21438632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of efflux proteins by electromagnetic field for delivering azidothymidine and saquinavir into the brain.
    Kuo YC; Lu CH
    Colloids Surf B Biointerfaces; 2012 Mar; 91():291-5. PubMed ID: 22136805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.
    Mahajan HS; Mahajan MS; Nerkar PP; Agrawal A
    Drug Deliv; 2014 Mar; 21(2):148-54. PubMed ID: 24128122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain to blood efflux transport of adenosine: blood-brain barrier studies in the rat.
    Isakovic AJ; Abbott NJ; Redzic ZB
    J Neurochem; 2004 Jul; 90(2):272-86. PubMed ID: 15228584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake characteristics of pinocembrin and its effect on p-glycoprotein at the blood-brain barrier in in vitro cell experiments.
    Yang ZH; Sun X; Qi Y; Mei C; Sun XB; Du GH
    J Asian Nat Prod Res; 2012; 14(1):14-21. PubMed ID: 22263589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of verapamil on the transport of peptides across the blood-brain barrier in rats: kinetic evidence for an apically polarized efflux mechanism.
    Chikhale EG; Burton PS; Borchardt RT
    J Pharmacol Exp Ther; 1995 Apr; 273(1):298-303. PubMed ID: 7714780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters.
    Perrière N; Yousif S; Cazaubon S; Chaverot N; Bourasset F; Cisternino S; Declèves X; Hori S; Terasaki T; Deli M; Scherrmann JM; Temsamani J; Roux F; Couraud PO
    Brain Res; 2007 May; 1150():1-13. PubMed ID: 17434463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the MDR-MDCK cell line as a permeability screen for the blood-brain barrier.
    Wang Q; Rager JD; Weinstein K; Kardos PS; Dobson GL; Li J; Hidalgo IJ
    Int J Pharm; 2005 Jan; 288(2):349-59. PubMed ID: 15620875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in brain penetration evaluation in drug discovery and development.
    Liu X; Chen C; Smith BJ
    J Pharmacol Exp Ther; 2008 May; 325(2):349-56. PubMed ID: 18203948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.