These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 2095129)

  • 21. Simultaneous measurement of 59Fe and 51Cr in iron absorption studies using a whole-body scanner with mobile shielding.
    Marx JJ; van den Beld B; van Dongen R; Strackee LH
    Nuklearmedizin; 1980 Jul; 19(3):140-5. PubMed ID: 6780983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel diaroylhydrazine ligands as iron chelators: coordination chemistry and biological activity.
    Bernhardt PV; Chin P; Sharpe PC; Wang JY; Richardson DR
    J Biol Inorg Chem; 2005 Nov; 10(7):761-77. PubMed ID: 16193304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orally active alpha-ketohydroxypyridine iron chelators: effects on iron and other metal mobilisations.
    Kontoghiorghes GJ
    Acta Haematol; 1987; 78(2-3):212-6. PubMed ID: 3120474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chelator-facilitated removal of iron from transferrin: relevance to combined chelation therapy.
    Devanur LD; Evans RW; Evans PJ; Hider RC
    Biochem J; 2008 Jan; 409(2):439-47. PubMed ID: 17919118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the placenta in intestinal absorption of iron in pregnant rats.
    Batey RG; Gallagher ND
    Gastroenterology; 1977 Feb; 72(2):255-9. PubMed ID: 830573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The enteral absorption of iron (II) from humic acid-iron complexes in suckling piglets using radiolabeled iron (59Fe)].
    Fuchs V; Kühnert M; Golbs S; Dedek W
    Dtsch Tierarztl Wochenschr; 1990 May; 97(5):208-9. PubMed ID: 2142072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Topical applications of iron chelators in photosensitization.
    Juzeniene A; Juzenas P; Iani V; Moan J
    Photochem Photobiol Sci; 2007 Dec; 6(12):1268-74. PubMed ID: 18046481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Susceptibility of enterococci to natural and synthetic iron chelators].
    Lisiecki P; Mikucki J
    Med Dosw Mikrobiol; 2002; 54(4):317-24. PubMed ID: 12650054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mobilization of intracellular iron by analogs of pyridoxal isonicotinoyl hydrazone (PIH) is determined by the membrane permeability of the iron-chelator complexes.
    Buss JL; Arduini E; Ponka P
    Biochem Pharmacol; 2002 Dec; 64(12):1689-701. PubMed ID: 12445858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dose response studies using desferrioxamine and orally active chelators in a mouse model.
    Kontoghiorghes GJ
    Scand J Haematol; 1986 Jul; 37(1):63-70. PubMed ID: 3764334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Competition between deferiprone, desferrioxamine and other chelators for iron and the effect of other metals.
    Sheppard LN; Kontoghiorghes GJ
    Arzneimittelforschung; 1993 Jun; 43(6):659-63. PubMed ID: 8352819
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free radical and cytotoxic effects of chelators and their iron complexes in the hepatocyte.
    Mostert LJ; Van Dorst JA; Koster JF; Van Eijk HG; Kontoghiorghes GJ
    Free Radic Res Commun; 1987; 3(6):379-88. PubMed ID: 3508452
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studies on the role of iron binding ligands and the intestinal brush border receptors in iron absorption.
    Rao BS; Rao KS
    Indian J Biochem Biophys; 1992 Apr; 29(2):214-8. PubMed ID: 1398716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Absorption of iron from iron succinyl-protein complexes by mouse small intestine.
    Simpson RJ; Raja KB; Peruzzi M; Cremonesi P
    J Pharm Pharmacol; 1991 Jun; 43(6):388-91. PubMed ID: 1681049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat.
    Barrand MA; Callingham BA; Dobbin P; Hider RC
    Br J Pharmacol; 1991 Mar; 102(3):723-9. PubMed ID: 1364845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of 2,4-dihydroxypyridine-N-oxide, a new orally active iron chelator, on iron excretion in mice.
    Kontoghiorghes GJ
    Clin Chim Acta; 1987 Mar; 163(2):137-41. PubMed ID: 3568416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo evaluation of hydroxypyridone iron chelators in a mouse model.
    Gyparaki M; Porter JB; Hirani S; Streater M; Hider RC; Huehns ER
    Acta Haematol; 1987; 78(2-3):217-21. PubMed ID: 3120475
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 2-Hydroxypyridine-N-oxides: effective new chelators in iron mobilisation.
    Kontoghiorghes GJ
    Biochim Biophys Acta; 1987 Apr; 924(1):13-8. PubMed ID: 3828392
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative study of iron mobilization from haemosiderin, ferritin and iron(III) precipitates by chelators.
    Kontoghiorghes GJ; Chambers S; Hoffbrand AV
    Biochem J; 1987 Jan; 241(1):87-92. PubMed ID: 3566714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of erythropoietic toxicity to cytarabine by pentobarbital.
    Lee EW
    Res Commun Chem Pathol Pharmacol; 1977 Dec; 18(4):753-64. PubMed ID: 928966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.