BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 20951675)

  • 1. Tryptophan orientations in membrane-bound gramicidin and melittin-a comparative linear dichroism study on transmembrane and surface-bound peptides.
    Svensson FR; Lincoln P; Nordén B; Esbjörner EK
    Biochim Biophys Acta; 2011 Jan; 1808(1):219-28. PubMed ID: 20951675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel.
    Maruyama T; Takeuchi H
    Biospectroscopy; 1998; 4(3):171-84. PubMed ID: 9639108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane binding of pH-sensitive influenza fusion peptides. positioning, configuration, and induced leakage in a lipid vesicle model.
    Esbjörner EK; Oglecka K; Lincoln P; Gräslund A; Nordén B
    Biochemistry; 2007 Nov; 46(47):13490-504. PubMed ID: 17973492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of tryptophan residues in gramicidin channel organization and function.
    Chattopadhyay A; Rawat SS; Greathouse DV; Kelkar DA; Koeppe RE
    Biophys J; 2008 Jul; 95(1):166-75. PubMed ID: 18339735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers.
    Kelkar DA; Chattopadhyay A
    Biochim Biophys Acta; 2007 May; 1768(5):1103-13. PubMed ID: 17321493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synchrotron radiation linear dichroism spectroscopy of the antibiotic peptide gramicidin in lipid membranes.
    Hicks MR; Dafforn TR; Damianoglou A; Wormell P; Rodger A; Hoffmann SV
    Analyst; 2009 Aug; 134(8):1623-8. PubMed ID: 20448930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gramicidin conformational studies with mixed-chain unsaturated phospholipid bilayer systems.
    Cox KJ; Ho C; Lombardi JV; Stubbs CD
    Biochemistry; 1992 Feb; 31(4):1112-7. PubMed ID: 1370909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR characterization of the structure and dynamics of synthetic melittin and melittin analogues in lipid environments.
    Weaver AJ; Kemple MD; Brauner JW; Mendelsohn R; Prendergast FG
    Biochemistry; 1992 Feb; 31(5):1301-13. PubMed ID: 1736989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.
    Haldar S; Chaudhuri A; Gu H; Koeppe RE; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Phys Chem B; 2012 Sep; 116(36):11056-64. PubMed ID: 22892073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function.
    Ghosh AK; Rukmini R; Chattopadhyay A
    Biochemistry; 1997 Nov; 36(47):14291-305. PubMed ID: 9398147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.
    Gu H; Lum K; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2011 Jun; 50(22):4855-66. PubMed ID: 21539360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of a melittin analog containing a non-natural tryptophan analog.
    Ridgway Z; Picciano AL; Gosavi PM; Moroz YS; Angevine CE; Chavis AE; Reiner JE; Korendovych IV; Caputo GA
    Biopolymers; 2015 Jul; 104(4):384-394. PubMed ID: 25670241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan orientation in model lipid membranes.
    Esbjörner EK; Caesar CE; Albinsson B; Lincoln P; Nordén B
    Biochem Biophys Res Commun; 2007 Sep; 361(3):645-50. PubMed ID: 17692825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake.
    Caesar CE; Esbjörner EK; Lincoln P; Nordén B
    Biochemistry; 2006 Jun; 45(24):7682-92. PubMed ID: 16768464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.