These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20951842)

  • 1. Lattice strains and load partitioning in bovine trabecular bone.
    Akhtar R; Daymond MR; Almer JD; Mummery PM
    Acta Biomater; 2011 Feb; 7(2):716-23. PubMed ID: 20951842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elastic strains in antler trabecular bone determined by synchrotron X-ray diffraction.
    Akhtar R; Daymond MR; Almer JD; Mummery PM
    Acta Biomater; 2008 Nov; 4(6):1677-87. PubMed ID: 18555757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of X-ray irradiation on the elastic strain evolution in the mineral phase of bovine bone under creep and load-free conditions.
    Deymier-Black AC; Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2013 Feb; 9(2):5305-12. PubMed ID: 22871638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trabecular bone microdamage and microstructural stresses under uniaxial compression.
    Nagaraja S; Couse TL; Guldberg RE
    J Biomech; 2005 Apr; 38(4):707-16. PubMed ID: 15713291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Internal strain gradients quantified in bone under load using high-energy X-ray scattering.
    Stock SR; Yuan F; Brinson LC; Almer JD
    J Biomech; 2011 Jan; 44(2):291-6. PubMed ID: 21051040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of load transfer between hydroxyapatite and collagen during creep deformation of bone.
    Deymier-Black AC; Yuan F; Singhal A; Almer JD; Brinson LC; Dunand DC
    Acta Biomater; 2012 Jan; 8(1):253-61. PubMed ID: 21878399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of compact bone failure under two different loading rates: experimental and modelling approaches.
    Pithioux M; Subit D; Chabrand P
    Med Eng Phys; 2004 Oct; 26(8):647-53. PubMed ID: 15471692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone.
    Wang X; Guyette J; Liu X; Roeder RK; Niebur GL
    Eur J Morphol; 2005; 42(1-2):61-70. PubMed ID: 16123025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction.
    Almer JD; Stock SR
    J Struct Biol; 2005 Oct; 152(1):14-27. PubMed ID: 16183302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stress and temperature on the micromechanics of creep in highly irradiated bone and dentin.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1467-75. PubMed ID: 23827597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of intermittent administration of pamidronate on the mechanical properties of canine cortical and trabecular bone.
    Acito AJ; Kasra M; Lee JM; Grynpas MD
    J Orthop Res; 1994 Sep; 12(5):742-6. PubMed ID: 7931792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the failure behaviour of vertebral trabecular architectures under uni-axial compression and wedge action loading conditions.
    McDonnell P; Harrison N; McHugh PE
    Med Eng Phys; 2010 Jul; 32(6):569-76. PubMed ID: 20233666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deformation behaviour of bovine cancellous bone.
    Dendorfer S; Maier HJ; Hammer J
    Technol Health Care; 2006; 14(6):549-56. PubMed ID: 17148868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of high-energy X-ray doses on bone elastic properties and residual strains.
    Singhal A; Deymier-Black AC; Almer JD; Dunand DC
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1774-86. PubMed ID: 22098877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue.
    Kelly N; McGarry JP
    J Mech Behav Biomed Mater; 2012 May; 9():184-97. PubMed ID: 22498295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of age and loading rate on equine cortical bone failure.
    Kulin RM; Jiang F; Vecchio KS
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):57-75. PubMed ID: 21094480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin.
    Deymier-Black AC; Almer JD; Stock SR; Haeffner DR; Dunand DC
    Acta Biomater; 2010 Jun; 6(6):2172-80. PubMed ID: 19925891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of high-energy X-ray irradiation on creep mechanisms in bone and dentin.
    Deymier-Black AC; Singhal A; Yuan F; Almer JD; Brinson LC; Dunand DC
    J Mech Behav Biomed Mater; 2013 May; 21():17-31. PubMed ID: 23454365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.