These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 20952055)

  • 1. The effect of protein structure on their controlled release from an injectable peptide hydrogel.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2010 Dec; 31(36):9527-34. PubMed ID: 20952055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold.
    Koutsopoulos S; Unsworth LD; Nagai Y; Zhang S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(12):4623-8. PubMed ID: 19273853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustained release of active chemotherapeutics from injectable-solid β-hairpin peptide hydrogel.
    Sun JE; Stewart B; Litan A; Lee SJ; Schneider JP; Langhans SA; Pochan DJ
    Biomater Sci; 2016 May; 4(5):839-48. PubMed ID: 26906463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular diffusion and release from self-assembled beta-hairpin peptide hydrogels.
    Branco MC; Pochan DJ; Wagner NJ; Schneider JP
    Biomaterials; 2009 Mar; 30(7):1339-47. PubMed ID: 19100615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of noncovalent interaction on the self-assembly of a designed peptide and its potential use as a carrier for controlled bFGF release.
    Liu Y; Zhang L; Wei W
    Int J Nanomedicine; 2017; 12():659-670. PubMed ID: 28176898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels.
    Jain E; Sheth S; Dunn A; Zustiak SP; Sell SA
    J Biomed Mater Res A; 2017 Dec; 105(12):3304-3314. PubMed ID: 28865187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein release from highly charged peptide hydrogel networks.
    Nagy-Smith K; Yamada Y; Schneider JP
    J Mater Chem B; 2016 Mar; 4(11):1999-2007. PubMed ID: 32263077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis.
    S V; A S; Annapoorna M; R J; Subramania I; Shantikumar V N; R J
    Colloids Surf B Biointerfaces; 2018 Jan; 161():129-138. PubMed ID: 29055865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of sustained and controlled protein release using polyelectrolyte complex-loaded injectable and thermosensitive hydrogel.
    Park MR; Chun C; Cho CS; Song SC
    Eur J Pharm Biopharm; 2010 Oct; 76(2):179-88. PubMed ID: 20600886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loading into and electro-stimulated release of peptides and proteins from chondroitin 4-sulphate hydrogels.
    Jensen M; Birch Hansen P; Murdan S; Frokjaer S; Florence AT
    Eur J Pharm Sci; 2002 Mar; 15(2):139-48. PubMed ID: 11849910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles.
    Altunbas A; Lee SJ; Rajasekaran SA; Schneider JP; Pochan DJ
    Biomaterials; 2011 Sep; 32(25):5906-14. PubMed ID: 21601921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Controlled release of fuctional proteins IGF-1, aFGF and VEGF through self-assembling peptide nanofiber hydrogel].
    Liu Y; Wu M; Lin B; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Apr; 28(2):310-3. PubMed ID: 21604492
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step self-assembly of liposome-multidomain peptide nanofiber hydrogel for time-controlled release.
    Wickremasinghe NC; Kumar VA; Hartgerink JD
    Biomacromolecules; 2014 Oct; 15(10):3587-95. PubMed ID: 25308335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics.
    Hiew SH; Wang JK; Koh K; Yang H; Bacha A; Lin J; Yip YS; Vos MIG; Chen L; Sobota RM; Tan NS; Tay CY; Miserez A
    Acta Biomater; 2021 Dec; 136():111-123. PubMed ID: 34551327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled release of BSA-linked cisplatin through a PepGel self-assembling peptide nanofiber hydrogel scaffold.
    Liang J; Liu G; Wang J; Sun XS
    Amino Acids; 2017 Dec; 49(12):2015-2021. PubMed ID: 28603803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulation of proteins in hydrogel carrier systems for controlled drug delivery: influence of network structure and drug size on release rate.
    Bertz A; Wöhl-Bruhn S; Miethe S; Tiersch B; Koetz J; Hust M; Bunjes H; Menzel H
    J Biotechnol; 2013 Jan; 163(2):243-9. PubMed ID: 22789475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Injectable Maltodextrin-Based Micelle/Hydrogel Composites for Simvastatin-Controlled Release.
    Yan S; Ren J; Jian Y; Wang W; Yun W; Yin J
    Biomacromolecules; 2018 Dec; 19(12):4554-4564. PubMed ID: 30350597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling hydrogelation kinetics by peptide design for three-dimensional encapsulation and injectable delivery of cells.
    Haines-Butterick L; Rajagopal K; Branco M; Salick D; Rughani R; Pilarz M; Lamm MS; Pochan DJ; Schneider JP
    Proc Natl Acad Sci U S A; 2007 May; 104(19):7791-6. PubMed ID: 17470802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An injectable and self-healing hydrogel for spatiotemporal protein release via fragmentation after passing through needles.
    Cho IS; Ooya T
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):145-159. PubMed ID: 29134859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.