These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20952094)

  • 1. Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis.
    Jiménez S; Ollat N; Deborde C; Maucourt M; Rellán-Álvarez R; Moreno MÁ; Gogorcena Y
    J Plant Physiol; 2011 Mar; 168(5):415-23. PubMed ID: 20952094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes induced by Fe deficiency and Fe resupply in the root protein profile of a peach-almond hybrid rootstock.
    Rodríguez-Celma J; Lattanzio G; Jiménez S; Briat JF; Abadía J; Abadía A; Gogorcena Y; López-Millán AF
    J Proteome Res; 2013 Mar; 12(3):1162-72. PubMed ID: 23320467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of 4-month Fe deficiency exposure on Fe reduction mechanism, photosynthetic gas exchange, chlorophyll fluorescence and antioxidant defense in two peach rootstocks differing in Fe deficiency tolerance.
    Molassiotis A; Tanou G; Diamantidis G; Patakas A; Therios I
    J Plant Physiol; 2006 Feb; 163(2):176-85. PubMed ID: 16399008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses and differential gene expression in Prunus rootstocks under iron deficiency conditions.
    Gonzalo MJ; Moreno MÁ; Gogorcena Y
    J Plant Physiol; 2011 Jun; 168(9):887-93. PubMed ID: 21306783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The activation of iron deficiency responses of grapevine rootstocks is dependent to the availability of the nitrogen forms.
    Khalil S; Strah R; Lodovici A; Vojta P; Berardinis F; Ziegler J; Pompe Novak M; Zanin L; Tomasi N; Forneck A; Griesser M
    BMC Plant Biol; 2024 Mar; 24(1):218. PubMed ID: 38532351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in physiological activities and root exudation profile of two grapevine rootstocks reveal common and specific strategies for Fe acquisition.
    Marastoni L; Lucini L; Miras-Moreno B; Trevisan M; Sega D; Zamboni A; Varanini Z
    Sci Rep; 2020 Nov; 10(1):18839. PubMed ID: 33139754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between endogenous hormonal content and somatic organogenesis in callus of peach (Prunus persica L. Batsch) cultivars and Prunus persica×Prunus dulcis rootstocks.
    Pérez-Jiménez M; Cantero-Navarro E; Pérez-Alfocea F; Le-Disquet I; Guivarc'h A; Cos-Terrer J
    J Plant Physiol; 2014 May; 171(8):619-24. PubMed ID: 24709154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome and physiological analyses reveal key factors in the tolerance of peach rootstocks to iron deficiency chlorosis.
    Sun S; Li J; Song H; Chen D; Tu M; Chen Q; Jiang G; Zhou Z
    3 Biotech; 2022 Jan; 12(1):38. PubMed ID: 35070628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological responses in roots of the grapevine rootstock 140 Ruggeri subjected to Fe deficiency and Fe-heme nutrition.
    López-Rayo S; Di Foggia M; Rodrigues Moreira E; Donnini S; Bombai G; Filippini G; Pisi A; Rombolà AD
    Plant Physiol Biochem; 2015 Nov; 96():171-9. PubMed ID: 26276277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide content is associated with tolerance to bicarbonate-induced chlorosis in micropropagated Prunus explants.
    Cellini A; Corpas FJ; Barroso JB; Masia A
    J Plant Physiol; 2011 Sep; 168(13):1543-9. PubMed ID: 21507506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of aquaporin NIP1;1 in the contrasting tolerance response to root hypoxia in Prunus rootstocks.
    Mateluna P; Salvatierra A; Solis S; Nuñez G; Pimentel P
    J Plant Physiol; 2018 Sep; 228():19-28. PubMed ID: 29842998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological, biochemical and molecular responses in four Prunus rootstocks submitted to drought stress.
    Jiménez S; Dridi J; Gutiérrez D; Moret D; Irigoyen JJ; Moreno MA; Gogorcena Y
    Tree Physiol; 2013 Oct; 33(10):1061-75. PubMed ID: 24162335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Root protein profiles of two citrus rootstocks grown under iron sufficiency/deficiency conditions.
    Muccilli V; Licciardello C; Fontanini D; Cunsolo V; Capocchi A; Saletti R; Torrisi B; Foti S
    Eur J Mass Spectrom (Chichester); 2013; 19(4):305-24. PubMed ID: 24575629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and Transcriptional Changes of Three Citrus Rootstock Seedlings under Iron Deficiency.
    Fu L; Zhu Q; Sun Y; Du W; Pan Z; Peng S
    Front Plant Sci; 2017; 8():1104. PubMed ID: 28694816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fruit quality of Redhaven and Royal Glory peach cultivars on seven different rootstocks.
    Orazem P; Stampar F; Hudina M
    J Agric Food Chem; 2011 Sep; 59(17):9394-401. PubMed ID: 21819130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic responses to iron deficiency in roots of Carrizo citrange [Citrus sinensis (L.) Osbeck. x Poncirus trifoliata (L.) Raf].
    Martínez-Cuenca MR; Iglesias DJ; Talón M; Abadía J; López-Millán AF; Primo-Millo E; Legaz F
    Tree Physiol; 2013 Mar; 33(3):320-9. PubMed ID: 23462311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Down co-regulation of light absorption, photochemistry, and carboxylation in Fe-deficient plants growing in different environments.
    Larbi A; Abadía A; Abadía J; Morales F
    Photosynth Res; 2006 Sep; 89(2-3):113-26. PubMed ID: 16969716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in the concentration of organic acids in roots and leaves of carob-tree under Fe deficiency.
    Correia PJ; Gama F; Saavedra T; Miguel MGA; Paulo Da Silva J; Abad A AN; de Varennes A; Pestana M
    Funct Plant Biol; 2014 Apr; 41(5):496-504. PubMed ID: 32481008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactional Effects of Climate Change Factors on the Water Status, Photosynthetic Rate, and Metabolic Regulation in Peach.
    Jiménez S; Fattahi M; Bedis K; Nasrolahpour-Moghadam S; Irigoyen JJ; Gogorcena Y
    Front Plant Sci; 2020; 11():43. PubMed ID: 32184791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.