BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 20952189)

  • 1. Substrate inhibition during bio-filtration of TCE using diazotrophic bacterial community.
    Shukla AK; Singh RS; Upadhyay SN; Dubey SK
    Bioresour Technol; 2011 Feb; 102(3):3561-3. PubMed ID: 20952189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-filtration of trichloroethylene using diazotrophic bacterial community.
    Shukla AK; Vishwakarma P; Singh RS; Upadhyay SN; Dubey SK
    Bioresour Technol; 2010 Apr; 101(7):2126-33. PubMed ID: 19962302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol.
    Shukla AK; Singh RS; Upadhyay SN; Dubey SK
    Bioresour Technol; 2010 Nov; 101(21):8119-26. PubMed ID: 20594824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S; Semprini L
    Biotechnol Bioeng; 2004 Nov; 88(4):451-64. PubMed ID: 15384053
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.
    Zhang Y; Tay JH
    J Environ Manage; 2016 Mar; 169():34-45. PubMed ID: 26720328
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.
    Frascari D; Zanaroli G; Bucchi G; Rosato A; Tavanaie N; Fraraccio S; Pinelli D; Fava F
    Bioresour Technol; 2013 Sep; 144():529-38. PubMed ID: 23896437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of H2S in down-flow GAC biofiltration using sulfide oxidizing bacteria from concentrated latex wastewater.
    Rattanapan C; Boonsawang P; Kantachote D
    Bioresour Technol; 2009 Jan; 100(1):125-30. PubMed ID: 18619836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic modeling of bioregeneration of chlorophenol-loaded granular activated carbon in simultaneous adsorption and biodegradation processes.
    Oh WD; Lim PE; Seng CE; Sujari AN
    Bioresour Technol; 2012 Jun; 114():179-87. PubMed ID: 22503192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and inhibition studies for the aerobic cometabolism of 1,1,1-trichloroethane, 1,1-dichloroethylene, and 1,1-dichloroethane by a butane-grown mixed culture.
    Kim Y; Arp DJ; Semprini L
    Biotechnol Bioeng; 2002 Dec; 80(5):498-508. PubMed ID: 12355460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation.
    Alpaslan Kocamemi B; Ceçen F
    Biodegradation; 2007 Feb; 18(1):71-81. PubMed ID: 16467966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa.
    Olaniran AO; Pillay D; Pillay B
    Chemosphere; 2008 Aug; 73(1):24-9. PubMed ID: 18635246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.
    Kumar A; Vercruyssen A; Dewulf J; Lens P; Van Langenhove H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):1046-52. PubMed ID: 22486674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of wood charcoal and its modified form as packing media for biofiltration of isoprene.
    Srivastva N; Singh RS; Dubey SK
    J Environ Manage; 2017 Jul; 196():252-260. PubMed ID: 28288359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in Michaelis-Menten kinetics for different cultivars of maize during cyanide removal.
    Yu XZ; Gu JD
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):254-9. PubMed ID: 17064775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activity and stability of a recombinant plasmid-borne TCE degradative pathway in suspended cultures.
    Sharp RR; Bryers JD; Jones WG; Shields MS
    Biotechnol Bioeng; 1998 Feb; 57(3):287-96. PubMed ID: 10099205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of accumulated matter from human feces in the sawdust matrix of the composting toilet.
    Hotta S; Funamizu N
    Bioresour Technol; 2009 Feb; 100(3):1310-4. PubMed ID: 18768311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.