BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 20952233)

  • 1. Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks.
    Stojić N; Erić S; Kuzmanovski I
    J Mol Graph Model; 2010 Nov; 29(3):450-60. PubMed ID: 20952233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic adjustment of the relative importance of different input variables for optimization of counter-propagation artificial neural networks.
    Kuzmanovski I; Novic M; Trpkovska M
    Anal Chim Acta; 2009 May; 642(1-2):142-7. PubMed ID: 19427469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variable selection and interpretation in structure-affinity correlation modeling of estrogen receptor binders.
    Marini F; Roncaglioni A; Novic M
    J Chem Inf Model; 2005; 45(6):1507-19. PubMed ID: 16309247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.
    Papa E; Kovarich S; Gramatica P
    Chem Res Toxicol; 2010 May; 23(5):946-54. PubMed ID: 20408563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks.
    Erić S; Kalinić M; Popović A; Zloh M; Kuzmanovski I
    Int J Pharm; 2012 Nov; 437(1-2):232-41. PubMed ID: 22940210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays.
    Liu H; Papa E; Gramatica P
    Chemosphere; 2008 Feb; 70(10):1889-97. PubMed ID: 17884132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The applications of machine learning algorithms in the modeling of estrogen-like chemicals.
    Liu H; Yao X; Gramatica P
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):490-6. PubMed ID: 19519328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary optimization in quantitative structure-activity relationship: an application of genetic neural networks.
    So SS; Karplus M
    J Med Chem; 1996 Mar; 39(7):1521-30. PubMed ID: 8691483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular structural characteristics as determinants of estrogen receptor selectivity.
    Agatonovic-Kustrin S; Turner JV; Glass BD
    J Pharm Biomed Anal; 2008 Sep; 48(2):369-75. PubMed ID: 18511229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-based classification of active and inactive estrogenic compounds by decision tree, LVQ and kNN methods.
    Asikainen A; Kolehmainen M; Ruuskanen J; Tuppurainen K
    Chemosphere; 2006 Jan; 62(4):658-73. PubMed ID: 15992856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods.
    Zang Q; Rotroff DM; Judson RS
    J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A self-adaptive genetic algorithm-artificial neural network algorithm with leave-one-out cross validation for descriptor selection in QSAR study.
    Wu J; Mei J; Wen S; Liao S; Chen J; Shen Y
    J Comput Chem; 2010 Jul; 31(10):1956-68. PubMed ID: 20512843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent advances in the molecular modeling of estrogen receptor-mediated toxicity.
    Tsakovska I; Pajeva I; Alov P; Worth A
    Adv Protein Chem Struct Biol; 2011; 85():217-51. PubMed ID: 21920325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pesticides as estrogen disruptors: QSAR for selective ERα and ERβ binding of pesticides.
    Agatonovic-Kustrin S; Alexander M; Morton DW; Turner JV
    Comb Chem High Throughput Screen; 2011 Feb; 14(2):85-92. PubMed ID: 20958252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks.
    Kahn I; Sild S; Maran U
    J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.