BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 20952531)

  • 1. Ruminant Nutrition Symposium: Role of fermentation acid absorption in the regulation of ruminal pH.
    Aschenbach JR; Penner GB; Stumpff F; Gäbel G
    J Anim Sci; 2011 Apr; 89(4):1092-107. PubMed ID: 20952531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruminant Nutrition Symposium: Molecular adaptation of ruminal epithelia to highly fermentable diets.
    Penner GB; Steele MA; Aschenbach JR; McBride BW
    J Anim Sci; 2011 Apr; 89(4):1108-19. PubMed ID: 20971890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An energy-rich diet enhances expression of Na(+)/H(+) exchanger isoform 1 and 3 messenger RNA in rumen epithelium of goat.
    Yang W; Shen Z; Martens H
    J Anim Sci; 2012 Jan; 90(1):307-17. PubMed ID: 21856899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats.
    Yan L; Zhang B; Shen Z
    J Dairy Sci; 2014 Sep; 97(9):5668-75. PubMed ID: 24996270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2.
    Abdoun K; Stumpff F; Rabbani I; Martens H
    Am J Physiol Gastrointest Liver Physiol; 2010 Feb; 298(2):G190-202. PubMed ID: 19926818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows.
    Storm AC; Kristensen NB; Hanigan MD
    J Dairy Sci; 2012 Jun; 95(6):2919-34. PubMed ID: 22612930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of energy substrates across the ruminal epithelium: implications and limitations.
    Gäbel G; Aschenbach JR; Müller F
    Anim Health Res Rev; 2002 Jun; 3(1):15-30. PubMed ID: 12400867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow.
    Aschenbach JR; Zebeli Q; Patra AK; Greco G; Amasheh S; Penner GB
    J Dairy Sci; 2019 Feb; 102(2):1866-1882. PubMed ID: 30580938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia and urea transport across the rumen epithelium: a review.
    Abdoun K; Stumpff F; Martens H
    Anim Health Res Rev; 2006; 7(1-2):43-59. PubMed ID: 17389053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do forestomach epithelia exhibit a Mg2+/2H(+)-exchanger?
    Leonhard-Marek S
    Magnes Res; 1999 Jun; 12(2):99-108. PubMed ID: 10423704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Key role of short-chain fatty acids in epithelial barrier failure during ruminal acidosis.
    Meissner S; Hagen F; Deiner C; Günzel D; Greco G; Shen Z; Aschenbach JR
    J Dairy Sci; 2017 Aug; 100(8):6662-6675. PubMed ID: 28551186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers.
    Schlau N; Guan LL; Oba M
    J Dairy Sci; 2012 Oct; 95(10):5866-75. PubMed ID: 22863095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ruminal acidosis in beef cattle: the current microbiological and nutritional outlook.
    Nagaraja TG; Titgemeyer EC
    J Dairy Sci; 2007 Jun; 90 Suppl 1():E17-38. PubMed ID: 17517750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidic pH and short-chain fatty acids activate Na+ transport but differentially modulate expression of Na+/H+ exchanger isoforms 1, 2, and 3 in omasal epithelium.
    Lu Z; Yao L; Jiang Z; Aschenbach JR; Martens H; Shen Z
    J Dairy Sci; 2016 Jan; 99(1):733-45. PubMed ID: 26547645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruminant Nutrition Symposium: Productivity, digestion, and health responses to hindgut acidosis in ruminants.
    Gressley TF; Hall MB; Armentano LE
    J Anim Sci; 2011 Apr; 89(4):1120-30. PubMed ID: 21415422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of sheep ruminal urea transport by ammonia and pH.
    Lu Z; Stumpff F; Deiner C; Rosendahl J; Braun H; Abdoun K; Aschenbach JR; Martens H
    Am J Physiol Regul Integr Comp Physiol; 2014 Sep; 307(5):R558-70. PubMed ID: 24920734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ruminal ammonia and butyrate concentrations on reticuloruminal epithelial blood flow and volatile fatty acid absorption kinetics under washed reticulorumen conditions in lactating dairy cows.
    Storm AC; Hanigan MD; Kristensen NB
    J Dairy Sci; 2011 Aug; 94(8):3980-94. PubMed ID: 21787934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocarboxylate transporter 1 (MCT1) mediates transport of short-chain fatty acids in bovine caecum.
    Kirat D; Kato S
    Exp Physiol; 2006 Sep; 91(5):835-44. PubMed ID: 16857719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subacute ruminal acidosis suppressed the expression of MCT1 in rumen of cows.
    Zhao C; Wang Y; Peng Z; Sun X; Sun G; Yuan X; Li X; Liu G
    J Cell Physiol; 2019 Jul; 234(7):11734-11745. PubMed ID: 30536938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1.
    Müller F; Huber K; Pfannkuche H; Aschenbach JR; Breves G; Gäbel G
    Am J Physiol Gastrointest Liver Physiol; 2002 Nov; 283(5):G1139-46. PubMed ID: 12381528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.