These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 20953)

  • 1. Partition of catalase and its peroxidase activities in human red cell membrane: effect of ATP depletion.
    Snyder LM; Liu SC; Palek J; Bulat P; Edelstein L; Srivastava SK; Fortier NL
    Biochim Biophys Acta; 1977 Oct; 470(2):290-302. PubMed ID: 20953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and purification of membrane-associated phosphatidylinositol-4-phosphate kinase from human red blood cells.
    Ling LE; Schulz JT; Cantley LC
    J Biol Chem; 1989 Mar; 264(9):5080-8. PubMed ID: 2538472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.
    Lux SE; John KM; Ukena TE
    J Clin Invest; 1978 Mar; 61(3):815-27. PubMed ID: 25286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased membrane binding of erythrocyte catalase in hereditary spherocytosis and in metabolically stressed normal cells.
    Allen DW; Cadman S; McCann SR; Finkel B
    Blood; 1977 Jan; 49(1):113-23. PubMed ID: 830369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and partial characterization of human erythrocyte membrane NADH: (acceptor) oxidoreductase.
    Wang CS; Alaupovic P
    J Supramol Struct; 1978; 9(1):1-14. PubMed ID: 32437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic dependence of protein arrangement in human erythrocyte membranes. I. Analysis of spectrin-rich complexes in ATP-depleted red cells.
    Palek J; Liu SC; Snyder LM
    Blood; 1978 Mar; 51(3):385-95. PubMed ID: 623905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L-Dopa peroxidase activity of human erythrocyte catalase.
    Awasthi YC; Srivastava SK; Snyder LM; Edelstein L; Fortier NL
    J Lab Clin Med; 1977 Apr; 89(4):763-9. PubMed ID: 403244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalases, peroxidases, and superoxide dismutases in Mycobacterium leprae and other mycobacteria studied by crossed immunoelectrophoresis and polyacrylamide gel electrophoresis.
    Lygren ST; Closs O; Bercouvier H; Wayne LG
    Infect Immun; 1986 Dec; 54(3):666-72. PubMed ID: 3536745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calmodulin. An activator of human erythrocyte (Ca2+ + Mg2+)ATPase phosphorylation.
    Luthra MG; Watts RP; Scherer KL; Kim HD
    Biochim Biophys Acta; 1980 Dec; 633(2):299-304. PubMed ID: 6109550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of catalase and glutathione peroxidase to red cell peroxide removal.
    Nicholis P
    Biochim Biophys Acta; 1972 Sep; 279(2):306-9. PubMed ID: 5082500
    [No Abstract]   [Full Text] [Related]  

  • 11. Red-cell-membrane polypeptide aggregates in glucose-6-phosphate dehydrogenase mutants with chronic hemolytic disease. A clue to the mechanism of hemolysis.
    Johnson GJ; Allen DW; Cadman S; Fairbanks VF; White JG; Lampkin BC; Kaplan ME
    N Engl J Med; 1979 Sep; 301(10):522-7. PubMed ID: 460305
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in allosteric properties of phosphofructokinase bound to erythrocyte membranes.
    Karadsheh NS; Uyeda K
    J Biol Chem; 1977 Nov; 252(21):7418-20. PubMed ID: 144126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human NADH-cytochrome b5 reductases: comparison among those of erythrocyte membrane, erythrocyte cytosol, and liver microsomes.
    Kitajima S; Minakami S
    J Biochem; 1983 Feb; 93(2):615-20. PubMed ID: 6841358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane proteins of incubated erythrocytes: effect of sulphydryl inhibition.
    Zail SS; Van den Hoek AK
    Br J Haematol; 1977 Nov; 37(3):353-61. PubMed ID: 603767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of the aldolase and the membrane of human erythrocytes.
    Strapazon E; Steck TL
    Biochemistry; 1977 Jun; 16(13):2966-71. PubMed ID: 18166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification and characterization of a catalytic subunit of an adenosine 3':5'-monophosphate-dependent protein kinase from human erythrocyte membranes.
    Suzuki K; Terao T; Osawa T
    J Biochem; 1981 Jan; 89(1):1-11. PubMed ID: 6260758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glyceraldehyde-3-phosphate dehydrogenase of rat erythrocytes has no membrane component.
    Ballas SK; Kliman HJ; Smith ED
    Biochim Biophys Acta; 1985 Sep; 831(1):142-9. PubMed ID: 4041465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Diphenoloxydase (DPOx) in red cell membranes].
    Tuil D; Katz P; Demos J
    Biochimie; 1978; 60(1):91-5. PubMed ID: 417741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes.
    Karyotou K; Donaldson RP
    Arch Biochem Biophys; 2005 Feb; 434(2):248-57. PubMed ID: 15639224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between phosphorylation and adenosine triphosphate-dependent Ca2+ binding of swine and bovine erythrocyte membranes.
    Kawaguchi T; Konishi K
    Biochim Biophys Acta; 1980 Apr; 597(3):577-86. PubMed ID: 6246940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.