These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 20953303)

  • 1. STRUCTURE AND FUNCTION OF THE MIDDLE EAR APPARATUS OF THE AQUATIC FROG, XENOPUS LAEVIS.
    Mason M; Wang M; Narins P
    Proc Inst Acoust; 2009 Jan; 31():13-21. PubMed ID: 20953303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex differences in the middle ear of the bullfrog (Rana catesbeiana).
    Mason MJ; Lin CC; Narins PM
    Brain Behav Evol; 2003; 61(2):91-101. PubMed ID: 12660445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana I. The extrastapes.
    Mason MJ; Narins PM
    J Exp Biol; 2002 Oct; 205(Pt 20):3153-65. PubMed ID: 12235195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysics of underwater hearing in the clawed frog, Xenopus laevis.
    Christensen-Dalsgaard J; Elepfandt A
    J Comp Physiol A; 1995 Mar; 176(3):317-24. PubMed ID: 7707269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibrometric studies of the middle ear of the bullfrog Rana catesbeiana II. The operculum.
    Mason MJ; Narins PM
    J Exp Biol; 2002 Oct; 205(Pt 20):3167-76. PubMed ID: 12235196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human middle ear transfer function measured by double laser interferometry system.
    Gan RZ; Wood MW; Dormer KJ
    Otol Neurotol; 2004 Jul; 25(4):423-35. PubMed ID: 15241216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auditory brainstem responses to airborne sounds in the aquatic frog Xenopus laevis: correlation with middle ear characteristics.
    Katbamna B; Brown JA; Collard M; Ide CF
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Apr; 192(4):381-7. PubMed ID: 16322997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
    Huang H; Wang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Dec; 30(24):1935-1939. PubMed ID: 29798268
    [No Abstract]   [Full Text] [Related]  

  • 10. A micro-computed tomographic study: determination of the angle between the tympanic membrane and stapes footplate in a total ossicular reconstruction prosthesis reconstruction.
    Herkenhoff S; Fischer B; Gleich O; Strutz J; Kwok P
    Otol Neurotol; 2011 Jun; 32(4):610-5. PubMed ID: 21389898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Energy Dissipation Through the Ossicular Chain and Inner Ear Using Laser Doppler Vibrometer Measurement of Round Window Velocity.
    Ryan M; Lally J; Adams JK; Higgins S; Ahmed M; Aden J; Esquivel C; Spear SA
    Otol Neurotol; 2020 Mar; 41(3):e387-e391. PubMed ID: 31821262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dynamic and harmonic damped finite element analysis model of stapedotomy.
    Blayney AW; Williams KR; Rice HJ
    Acta Otolaryngol; 1997 Mar; 117(2):269-73. PubMed ID: 9105464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study on the effect of ligament and tendon detachment on human middle ear sound transfer using mathematic model.
    Xie P; Peng Y; Hu J; Yi S
    Proc Inst Mech Eng H; 2019 Aug; 233(8):784-792. PubMed ID: 31165672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human temporal bone study of stapes footplate movement.
    Heiland KE; Goode RL; Asai M; Huber AM
    Am J Otol; 1999 Jan; 20(1):81-6. PubMed ID: 9918179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional stapes footplate motion in human temporal bones.
    Hato N; Stenfelt S; Goode RL
    Audiol Neurootol; 2003; 8(3):140-52. PubMed ID: 12679625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on the mechanics of the normal human middle ear.
    Vlaming MS; Feenstra L
    Clin Otolaryngol Allied Sci; 1986 Oct; 11(5):353-63. PubMed ID: 3536194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of increased inner ear pressure on middle ear mechanics.
    Murakami S; Gyo K; Goode RL
    Otolaryngol Head Neck Surg; 1998 May; 118(5):703-8. PubMed ID: 9591878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Underwater hearing in the clawed frog, Xenopus laevis. Tympanic motion studied with laser vibrometry.
    Christensen-Dalsgaard J; Breithaupt T; Elepfandt A
    Naturwissenschaften; 1990 Mar; 77(3):135-7. PubMed ID: 2342580
    [No Abstract]   [Full Text] [Related]  

  • 20. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.