BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20953311)

  • 1. Sex differences in the electrocommunication signals of the electric fish Apteronotus bonapartii.
    Ho WW; Fernandes CC; Alves-Gomes JA; Smith GT
    Ethology; 2010 Nov; 116(11):1050-1064. PubMed ID: 20953311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii.
    Zhou M; Smith GT
    J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae).
    Smith GT
    J Exp Biol; 2013 Jul; 216(Pt 13):2421-33. PubMed ID: 23761467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electrocommunication behavior.
    Ho WW; Rack JM; Smith GT
    Horm Behav; 2013 Jan; 63(1):49-53. PubMed ID: 23142327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.
    Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species variation in steroid hormone-related gene expression contributes to species diversity in sexually dimorphic communication in electric fishes.
    Proffitt MR; Smith GT
    Horm Behav; 2024 Jun; 164():105576. PubMed ID: 38852479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocommunication signals and aggressive behavior vary among male morphs in an apteronotid fish, Compsaraia samueli.
    Freiler MK; Proffitt MR; Smith GT
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35603444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus.
    Bastian J; Schniederjan S; Nguyenkim J
    J Exp Biol; 2001 Jun; 204(Pt 11):1909-23. PubMed ID: 11441033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity of sexual dimorphism in electrocommunication signals and its androgen regulation in a genus of electric fish, Apteronotus.
    Dunlap KD; Thomas P; Zakon HH
    J Comp Physiol A; 1998 Jul; 183(1):77-86. PubMed ID: 9691480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Combs N
    Horm Behav; 2008 Jun; 54(1):69-82. PubMed ID: 18336816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
    Kolodziejski JA; Sanford SE; Smith GT
    J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior.
    Quintana L; Harvey-Girard E; Lescano C; Macadar O; Lorenzo D
    J Physiol Paris; 2014; 108(2-3):155-66. PubMed ID: 24794754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance.
    Telgkamp P; Combs N; Smith GT
    Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sex steroids and communication signals in electric fish: a tale of two species.
    Zakon HH; Dunlap KD
    Brain Behav Evol; 1999; 54(1):61-9. PubMed ID: 10516405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus.
    Dunlap KD; Larkins-Ford J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):153-61. PubMed ID: 12607044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgens regulate sex differences in signaling but are not associated with male variation in morphology in the weakly electric fish Parapteronotus hasemani.
    Petzold JM; Smith GT
    Horm Behav; 2016 Feb; 78():67-71. PubMed ID: 26518663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus.
    Dunlap KD
    Horm Behav; 2002 Mar; 41(2):187-94. PubMed ID: 11855903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.