These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 20953489)

  • 21. Fluorescence-based high throughput screening for noble metal-free and platinum-poor anode catalysts for the direct methanol fuel cell.
    Welsch FG; Stöwe K; Maier WF
    ACS Comb Sci; 2011 Sep; 13(5):518-29. PubMed ID: 21830804
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of Low-Cost Me-N-C (Me = Fe or Co) Electrocatalysts Derived from EDTA in Direct Methanol Fuel Cells (DMFCs).
    Lo Vecchio C; Aricò AS; Baglio V
    Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30002292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and characterization of Pt-WO3 as methanol oxidation catalysts for fuel cells.
    Jayaraman S; Jaramillo TF; Baeck SH; McFarland EW
    J Phys Chem B; 2005 Dec; 109(48):22958-66. PubMed ID: 16853991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as DMFC anode catalysts using microwave processing.
    Steigerwalt ES; Deluga GA; Lukehart CM
    J Nanosci Nanotechnol; 2003 Jun; 3(3):247-51. PubMed ID: 14503410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells.
    Lin Y; Cui X; Yen CH; Wai CM
    Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First principles study of oxygen adsorption on Se-modified Ru nanoparticles.
    Zuluaga S; Stolbov S
    J Phys Condens Matter; 2012 Aug; 24(34):345303. PubMed ID: 22871976
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and structural characterization of Se-modified carbon-supported Ru nanoparticles for the oxygen reduction reaction.
    Zaikovskii VI; Nagabhushana KS; Kriventsov VV; Loponov KN; Cherepanova SV; Kvon RI; Bönnemann H; Kochubey DI; Savinova ER
    J Phys Chem B; 2006 Apr; 110(13):6881-90. PubMed ID: 16570998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Platinum/Carbon nanotube nanocomposite synthesized in supercritical fluid as electrocatalysts for low-temperature fuel cells.
    Lin Y; Cui X; Yen C; Wai CM
    J Phys Chem B; 2005 Aug; 109(30):14410-5. PubMed ID: 16852813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of nanoscale amorphous, crystalline and phase-segregated PtNiP nanoparticles and their electrocatalytic effect on methanol oxidation reaction.
    Ma Y; Wang R; Wang H; Linkov V; Ji S
    Phys Chem Chem Phys; 2014 Feb; 16(8):3593-602. PubMed ID: 24414092
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-Performance Direct Methanol Fuel Cells with Precious-Metal-Free Cathode.
    Li Q; Wang T; Havas D; Zhang H; Xu P; Han J; Cho J; Wu G
    Adv Sci (Weinh); 2016 Nov; 3(11):1600140. PubMed ID: 27980990
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes.
    Rivera Gavidia LM; Sebastián D; Pastor E; Aricò AS; Baglio V
    Materials (Basel); 2017 May; 10(6):. PubMed ID: 28772937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methanol Tolerant Pt-C Core-Shell Cathode Catalyst for Direct Methanol Fuel Cells.
    Lee D; Gok S; Kim Y; Sung YE; Lee E; Jang JH; Hwang JY; Kwon OJ; Lim T
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44588-44596. PubMed ID: 32924426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single wall carbon nanotube supports for portable direct methanol fuel cells.
    Girishkumar G; Hall TD; Vinodgopal K; Kamat PV
    J Phys Chem B; 2006 Jan; 110(1):107-14. PubMed ID: 16471506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A durable PtRu/C catalyst with a thin protective layer for direct methanol fuel cells.
    Shimazaki Y; Hayasaka S; Koyama T; Nagao D; Kobayashi Y; Konno M
    J Colloid Interface Sci; 2010 Nov; 351(2):580-3. PubMed ID: 20797720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probe molecule chemisorption-low energy ion scattering study of surface active sites present in the orthorhombic Mo-V-(Te-Nb)-O catalysts for propane (amm)oxidation.
    Guliants VV; Bhandari R; Hughett AR; Bhatt S; Schuler BD; Brongersma HH; Knoester A; Gaffney AM; Han S
    J Phys Chem B; 2006 Mar; 110(12):6129-40. PubMed ID: 16553426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes.
    Wei ZD; Li LL; Luo YH; Yan C; Sun CX; Yin GZ; Shen PK
    J Phys Chem B; 2006 Dec; 110(51):26055-61. PubMed ID: 17181257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Making oxygen with ruthenium complexes.
    Concepcion JJ; Jurss JW; Brennaman MK; Hoertz PG; Patrocinio AO; Murakami Iha NY; Templeton JL; Meyer TJ
    Acc Chem Res; 2009 Dec; 42(12):1954-65. PubMed ID: 19817345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications.
    Tian ZQ; Jiang SP; Liang YM; Shen PK
    J Phys Chem B; 2006 Mar; 110(11):5343-50. PubMed ID: 16539467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silica nanoparticles for template synthesis of supported Pt and Pt-Ru electrocatalysts.
    Li A; Zhao JX; Pierce DT
    J Colloid Interface Sci; 2010 Nov; 351(2):365-73. PubMed ID: 20728899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of the Optimum Composition of Low-Temperature Fuel Cell Electrocatalysts for Methanol Oxidation by Combinatorial Screening.
    Antolini E
    ACS Comb Sci; 2017 Feb; 19(2):47-54. PubMed ID: 27992162
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.