BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 20953495)

  • 1. DFT characterization of the reaction pathways for terminal- to μ-hydride isomerisation in synthetic models of the [FeFe]-hydrogenase active site.
    Zampella G; Fantucci P; De Gioia L
    Chem Commun (Camb); 2010 Dec; 46(46):8824-6. PubMed ID: 20953495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A carbonyl-rich bridging hydride complex relevant to the Fe-Fe hydrogenase active site.
    Matthews SL; Heinekey DM
    Inorg Chem; 2010 Nov; 49(21):9746-8. PubMed ID: 20883039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An oxidized active site model for the FeFe hydrogenase: reduction with hydrogen gas.
    Matthews SL; Heinekey DM
    Inorg Chem; 2011 Sep; 50(17):7925-7. PubMed ID: 21793493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Lewis acid on the structure of a diiron dithiolate complex based on the active site of [FeFe]-hydrogenase assessed by density functional theory.
    Lee JW; Jo WH
    Dalton Trans; 2009 Oct; (40):8532-7. PubMed ID: 19809728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of H2 production by the [FeFe]H subcluster of di-iron hydrogenases: implications for abiotic catalysts.
    Sbraccia C; Zipoli F; Car R; Cohen MH; Dismukes GC; Selloni A
    J Phys Chem B; 2008 Oct; 112(42):13381-90. PubMed ID: 18826265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production by the naked active site of the di-iron hydrogenases in water.
    Zipoli F; Car R; Cohen MH; Selloni A
    J Phys Chem B; 2009 Oct; 113(39):13096-106. PubMed ID: 19737003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and characterization of a series of model complexes of the active site of [Fe]-hydrogenase (Hmd).
    Chen D; Ahrens-Botzong A; Schünemann V; Scopelliti R; Hu X
    Inorg Chem; 2011 Jun; 50(11):5249-57. PubMed ID: 21539357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic modeling of hydrogen conversion at [Fe] hydrogenase active-site models.
    Finkelmann AR; Stiebritz MT; Reiher M
    J Phys Chem B; 2013 May; 117(17):4806-17. PubMed ID: 23560849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Refining the active site structure of iron-iron hydrogenase using computational infrared spectroscopy.
    Tye JW; Darensbourg MY; Hall MB
    Inorg Chem; 2008 Apr; 47(7):2380-8. PubMed ID: 18307282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations.
    Löscher S; Schwartz L; Stein M; Ott S; Haumann M
    Inorg Chem; 2007 Dec; 46(26):11094-105. PubMed ID: 18041829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Models for the active site in [FeFe] hydrogenase with iron-bound ligands derived from bis-, tris-, and tetrakis(mercaptomethyl)silanes.
    Apfel UP; Troegel D; Halpin Y; Tschierlei S; Uhlemann U; Görls H; Schmitt M; Popp J; Dunne P; Venkatesan M; Coey M; Rudolph M; Vos JG; Tacke R; Weigand W
    Inorg Chem; 2010 Nov; 49(21):10117-32. PubMed ID: 20873759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(kappa(2)-Ph2PCH2CH2PPh2)(mu-S(CH2)3S)] and related models of the [FeFe]-hydrogenases active site: a DFT investigation.
    Greco C; Fantucci P; De Gioia L; Suarez-Bertoa R; Bruschi M; Talarmin J; Schollhammer P
    Dalton Trans; 2010 Aug; 39(31):7320-9. PubMed ID: 20593098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic and structural studies on new diiron azadithiolate (ADT)-type model compounds for active site of [FeFe]hydrogenases.
    Song LC; Xie ZJ; Liu XF; Ming JB; Ge JH; Zhang XG; Yan TY; Gao P
    Dalton Trans; 2011 Jan; 40(4):837-46. PubMed ID: 21152555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron hydrogenase active site mimic holding a proton and a hydride.
    Schwartz L; Eilers G; Eriksson L; Gogoll A; Lomoth R; Ott S
    Chem Commun (Camb); 2006 Feb; (5):520-2. PubMed ID: 16432569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a diferrous terminal hydride mechanistically relevant to the Fe-only hydrogenases.
    van der Vlugt JI; Rauchfuss TB; Whaley CM; Wilson SR
    J Am Chem Soc; 2005 Nov; 127(46):16012-3. PubMed ID: 16287273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density functional study of the thermodynamics of hydrogen production by tetrairon hexathiolate, Fe4[MeC(CH2S)3]2(CO)8, a hydrogenase model.
    Surawatanawong P; Hall MB
    Inorg Chem; 2010 Jun; 49(12):5737-47. PubMed ID: 20481518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photoelectrochemical hydrogen generation by an [FeFe] hydrogenase active site mimic at a p-type silicon/molecular electrocatalyst junction.
    Kumar B; Beyler M; Kubiak CP; Ott S
    Chemistry; 2012 Jan; 18(5):1295-8. PubMed ID: 22223148
    [No Abstract]   [Full Text] [Related]  

  • 20. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer.
    Yang X; Hall MB
    J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.