BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 20953603)

  • 1. Genetic analysis around aminoalcohol dehydrogenase gene of Rhodococcus erythropolis MAK154: a putative GntR transcription factor in transcriptional regulation.
    Urano N; Kataoka M; Ishige T; Kita S; Sakamoto K; Shimizu S
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):739-46. PubMed ID: 20953603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cloning and expression of the L-1-amino-2-propanol dehydrogenase gene from Rhodococcus erythropolis, and its application to double chiral compound production.
    Kataoka M; Ishige T; Urano N; Nakamura Y; Sakuradani E; Fukui S; Kita S; Sakamoto K; Shimizu S
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):597-604. PubMed ID: 18584170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel NADP+-dependent L-1-amino-2-propanol dehydrogenase from Rhodococcus erythropolis MAK154: a promising enzyme for the production of double chiral aminoalcohols.
    Kataoka M; Nakamura Y; Urano N; Ishige T; Shi G; Kita S; Sakamoto K; Shimizu S
    Lett Appl Microbiol; 2006 Oct; 43(4):430-5. PubMed ID: 16965375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of an aminoalcohol dehydrogenase for efficient production of double chiral aminoalcohols.
    Urano N; Fukui S; Kumashiro S; Ishige T; Kita S; Sakamoto K; Kataoka M; Shimizu S
    J Biosci Bioeng; 2011 Mar; 111(3):266-71. PubMed ID: 21163696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of Rhodococcus expression vectors and expression of the aminoalcohol dehydrogenase gene in Rhodococcus erythropolis.
    Yamamura ET
    Biosci Biotechnol Biochem; 2018 Aug; 82(8):1396-1403. PubMed ID: 29673281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LplR, a repressor belonging to the TetR family, regulates expression of the L-pantoyl lactone dehydrogenase gene in Rhodococcus erythropolis.
    Si D; Urano N; Shimizu S; Kataoka M
    Appl Environ Microbiol; 2012 Nov; 78(22):7923-30. PubMed ID: 22941082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB.
    van der Geize R; Hessels GI; Nienhuis-Kuiper M; Dijkhuizen L
    Appl Environ Microbiol; 2008 Dec; 74(23):7197-203. PubMed ID: 18836008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ChoG is the main inducible extracellular cholesterol oxidase of Rhodococcus sp. strain CECT3014.
    Fernández de Las Heras L; Mascaraque V; García Fernández E; Navarro-Llorens JM; Perera J; Drzyzga O
    Microbiol Res; 2011 Jul; 166(5):403-18. PubMed ID: 20630728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
    Veselý M; Knoppová M; Nesvera J; Pátek M
    Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sequence and structure analysis of cryptic plasmid pN30 from oil-oxidizing strain Rhodococcus erythropolis 30].
    Riabchenko LE; Novikov AD; Golyshin PN; Ianenko AS
    Genetika; 2005 Dec; 41(12):1725-7. PubMed ID: 16396462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, sequence analysis, and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297.
    Abokitse K; Hummel W
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):380-6. PubMed ID: 12719937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the Rhodococcus opacus thiostrepton-inducible genes tipAL and tipAS: application for recombinant protein expression in Rhodococcus.
    Dong L; Nakashima N; Tamura N; Tamura T
    FEMS Microbiol Lett; 2004 Aug; 237(1):35-40. PubMed ID: 15268935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L-pantoyl lactone dehydrogenase from Rhodococcus erythropolis: genetic analyses and application to the stereospecific oxidation of L-pantoyl lactone.
    Si D; Urano N; Nozaki S; Honda K; Shimizu S; Kataoka M
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):431-40. PubMed ID: 22398860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular cloning and identification of a novel oxygenase gene specifically induced during the growth of Rhodococcus sp. strain T104 on limonene.
    Choi KY; Kim D; Koh SC; So JS; Kim JS; Kim E
    J Microbiol; 2004 Jun; 42(2):160-2. PubMed ID: 15357313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4.
    Sekine M; Tanikawa S; Omata S; Saito M; Fujisawa T; Tsukatani N; Tajima T; Sekigawa T; Kosugi H; Matsuo Y; Nishiko R; Imamura K; Ito M; Narita H; Tago S; Fujita N; Harayama S
    Environ Microbiol; 2006 Feb; 8(2):334-46. PubMed ID: 16423019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequence and transcriptional analysis of a gene cluster of Pseudomonas putida 86 involved in quinoline degradation.
    Carl B; Arnold A; Hauer B; Fetzner S
    Gene; 2004 Apr; 331():177-88. PubMed ID: 15094204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional expression of the particulate methane mono-oxygenase gene in recombinant Rhodococcus erythropolis.
    Gou Z; Xing XH; Luo M; Jiang H; Han B; Wu H; Wang L; Zhang F
    FEMS Microbiol Lett; 2006 Oct; 263(2):136-41. PubMed ID: 16978347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A small cryptic plasmid from Rhodococcus erythropolis: characterization and utility for gene expression.
    Kostichka K; Tao L; Bramucci M; Tomb JF; Nagarajan V; Cheng Q
    Appl Microbiol Biotechnol; 2003 Jul; 62(1):61-8. PubMed ID: 12835922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene organization and transcriptional regulation of the gntRKU operon involved in gluconate uptake and catabolism of Escherichia coli.
    Izu H; Adachi O; Yamada M
    J Mol Biol; 1997 Apr; 267(4):778-93. PubMed ID: 9135111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PsrR, a member of the AraC family of transcriptional regulators, is required for the synthesis of Wolinella succinogenes polysulfide reductase.
    Braatsch S; Krafft T; Simon J; Gross R; Klimmek O; Kröger A
    Arch Microbiol; 2002 Sep; 178(3):202-7. PubMed ID: 12189421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.