These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 20953674)
1. Indirect rapid prototyping of biphasic calcium phosphate scaffolds as bone substitutes: influence of phase composition, macroporosity and pore geometry on mechanical properties. Schumacher M; Deisinger U; Detsch R; Ziegler G J Mater Sci Mater Med; 2010 Dec; 21(12):3119-27. PubMed ID: 20953674 [TBL] [Abstract][Full Text] [Related]
2. Static and dynamic cultivation of bone marrow stromal cells on biphasic calcium phosphate scaffolds derived from an indirect rapid prototyping technique. Schumacher M; Uhl F; Detsch R; Deisinger U; Ziegler G J Mater Sci Mater Med; 2010 Nov; 21(11):3039-48. PubMed ID: 20857322 [TBL] [Abstract][Full Text] [Related]
3. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558 [TBL] [Abstract][Full Text] [Related]
4. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
5. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
6. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. Singh YP; Dasgupta S; Bhaskar R J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176 [TBL] [Abstract][Full Text] [Related]
7. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical properties and cytotoxicities of Sr-containing biphasic calcium phosphate bone scaffolds. Dagang G; Kewei X; Yaxiong L J Mater Sci Mater Med; 2010 Jun; 21(6):1927-36. PubMed ID: 20217190 [TBL] [Abstract][Full Text] [Related]
9. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional printing akermanite porous scaffolds for load-bearing bone defect repair: An investigation of osteogenic capability and mechanical evolution. Liu A; Sun M; Yang X; Ma C; Liu Y; Yang X; Yan S; Gou Z J Biomater Appl; 2016 Nov; 31(5):650-660. PubMed ID: 27585972 [TBL] [Abstract][Full Text] [Related]
11. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130 [TBL] [Abstract][Full Text] [Related]
12. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
13. Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. Hsu YH; Turner IG; Miles AW J Mater Sci Mater Med; 2007 Dec; 18(12):2319-29. PubMed ID: 17569009 [TBL] [Abstract][Full Text] [Related]
14. The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite-PCL composites. Roohani-Esfahani SI; Nouri-Khorasani S; Lu Z; Appleyard R; Zreiqat H Biomaterials; 2010 Jul; 31(21):5498-509. PubMed ID: 20398935 [TBL] [Abstract][Full Text] [Related]
15. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750 [TBL] [Abstract][Full Text] [Related]
16. Fabrication of porous beta-tricalcium phosphate with microchannel and customized geometry based on gel-casting and rapid prototyping. Li X; Bian W; Li D; Lian Q; Jin Z Proc Inst Mech Eng H; 2011 Mar; 225(3):315-23. PubMed ID: 21485332 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration. He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794 [TBL] [Abstract][Full Text] [Related]
19. Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Schmidleithner C; Malferrari S; Palgrave R; Bomze D; Schwentenwein M; Kalaskar DM Biomed Mater; 2019 Jun; 14(4):045018. PubMed ID: 31170697 [TBL] [Abstract][Full Text] [Related]
20. Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Flauder S; Gbureck U; Müller FA Acta Biomater; 2014 Dec; 10(12):5148-5155. PubMed ID: 25159370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]