BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20953911)

  • 21.
    Kirk JA; Saccomani MP; Shroff SG
    Cardiovasc Eng Technol; 2013 Dec; 4(4):500-512. PubMed ID: 26726299
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.
    Meshkat N; Anderson C; DiStefano JJ
    Math Biosci; 2012 Sep; 239(1):117-23. PubMed ID: 22626896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust global identifiability theory using potentials--Application to compartmental models.
    Wongvanich N; Hann CE; Sirisena HR
    Math Biosci; 2015 Apr; 262():182-97. PubMed ID: 25660327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. ConvAn: a convergence analyzing tool for optimization of biochemical networks.
    Kostromins A; Mozga I; Stalidzans E
    Biosystems; 2012; 108(1-3):73-7. PubMed ID: 22212352
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Identification of radiopharmaceutical transport models in functional radionuclide diagnosis].
    Bondareva IB; Narkevich BIa
    Med Radiol (Mosk); 1991; 36(5):36-9. PubMed ID: 2034105
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bifurcation discovery tool.
    Chickarmane V; Paladugu SR; Bergmann F; Sauro HM
    Bioinformatics; 2005 Sep; 21(18):3688-90. PubMed ID: 16081475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A systematic approach for doing an a priori identifiability study of dynamical nonlinear models.
    Verdière N; Orange S
    Math Biosci; 2019 Feb; 308():105-113. PubMed ID: 30562488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifiability and observability analysis for experimental design in nonlinear dynamical models.
    Raue A; Becker V; Klingmüller U; Timmer J
    Chaos; 2010 Dec; 20(4):045105. PubMed ID: 21198117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genetdes: automatic design of transcriptional networks.
    Rodrigo G; Carrera J; Jaramillo A
    Bioinformatics; 2007 Jul; 23(14):1857-8. PubMed ID: 17485427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Score tests for exploring complex models: application to HIV dynamics models.
    Drylewicz J; Commenges D; Thiébaut R
    Biom J; 2010 Feb; 52(1):10-21. PubMed ID: 19937998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Moment-closure approximations for mass-action models.
    Gillespie CS
    IET Syst Biol; 2009 Jan; 3(1):52-8. PubMed ID: 19154084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural identifiability analysis of epidemic models based on differential equations: a tutorial-based primer.
    Chowell G; Dahal S; Liyanage YR; Tariq A; Tuncer N
    J Math Biol; 2023 Nov; 87(6):79. PubMed ID: 37921877
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A multiple imputation method for missing covariates in non-linear mixed-effects models with application to HIV dynamics.
    Wu H; Wu L
    Stat Med; 2001 Jun; 20(12):1755-69. PubMed ID: 11406839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GenSSI: a software toolbox for structural identifiability analysis of biological models.
    Chiş O; Banga JR; Balsa-Canto E
    Bioinformatics; 2011 Sep; 27(18):2610-1. PubMed ID: 21784792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ASAS-NANP symposium: Mathematical Modeling in Animal Nutrition: The power of identifiability analysis for dynamic modeling in animal science:a practitioner approach.
    Muñoz-Tamayo R; Tedeschi LO
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37997927
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Why neural networks should not be used for HIV-1 protease cleavage site prediction.
    Rögnvaldsson T; You L
    Bioinformatics; 2004 Jul; 20(11):1702-9. PubMed ID: 14988129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The study of long-term HIV dynamics using semi-parametric non-linear mixed-effects models.
    Wu H; Zhang JT
    Stat Med; 2002 Dec; 21(23):3655-75. PubMed ID: 12436462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational procedures for optimal experimental design in biological systems.
    Balsa-Canto E; Alonso AA; Banga JR
    IET Syst Biol; 2008 Jul; 2(4):163-72. PubMed ID: 18681746
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complexity reduction of biochemical rate expressions.
    Schmidt H; Madsen MF; Danø S; Cedersund G
    Bioinformatics; 2008 Mar; 24(6):848-54. PubMed ID: 18267948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling global vector fields of chaotic systems from noisy time series with the aid of structure-selection techniques.
    Xu D; Lu F
    Chaos; 2006 Dec; 16(4):043109. PubMed ID: 17199387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.