BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 20954170)

  • 1. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor.
    Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H
    Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water.
    Tani K; Matsui Y; Narita K; Ohno K; Matsushita T
    Water Sci Technol; 2010; 62(11):2579-89. PubMed ID: 21099045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of pesticide runoff from paddy fields to rural rivers.
    Numabe A; Nagahora S
    Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration and validation of a dynamic water model in agricultural scenarios.
    Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A
    Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level.
    Probst M; Berenzen N; Lentzen-Godding A; Schulz R
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Runoff characteristics of particulate pesticides in a river from paddy fields.
    Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y
    Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative ecological risks of pesticides used in plantation production of papaya: application of the SYNOPS indicator.
    Hernández-Hernández CN; Valle-Mora J; Santiesteban-Hernández A; Bello-Mendoza R
    Sci Total Environ; 2007 Aug; 381(1-3):112-25. PubMed ID: 17482661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment.
    Comoretto L; Arfib B; Chiron S
    Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS.
    Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M
    Chemosphere; 2009 Aug; 76(6):860-6. PubMed ID: 19443016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Runoff of pesticides from rice fields in the Ile de Camargue (Rhône river delta, France): field study and modeling.
    Comoretto L; Arfib B; Talva R; Chauvelon P; Pichaud M; Chiron S; Höhener P
    Environ Pollut; 2008 Feb; 151(3):486-93. PubMed ID: 17562351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.