These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20954170)

  • 1. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor.
    Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H
    Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 1: Paddy watershed monitoring.
    Vu SH; Ishihara S; Watanabe H
    Pest Manag Sci; 2006 Dec; 62(12):1193-206. PubMed ID: 17099930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity analysis using a diffuse pollution hydrologic model to assess factors affecting pesticide concentrations in river water.
    Tani K; Matsui Y; Narita K; Ohno K; Matsushita T
    Water Sci Technol; 2010; 62(11):2579-89. PubMed ID: 21099045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of mefenacet concentrations in paddy fields by an improved PCPF-1 model.
    Watanabe H; Takagi K; Vu SH
    Pest Manag Sci; 2006 Jan; 62(1):20-9. PubMed ID: 16261540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pesticide exposure assessment in rice paddies in Europe: a comparative study of existing mathematical models.
    Karpouzas DG; Cervelli S; Watanabe H; Capri E; Ferrero A
    Pest Manag Sci; 2006 Jul; 62(7):624-36. PubMed ID: 16718738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating concentration of bensulphuron-methyl in a drainage canal of a paddy block using a rice pesticide model.
    Phong TK; Hiramatsu K; Watanabe H
    Environ Technol; 2011 Jan; 32(1-2):69-81. PubMed ID: 21473270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of pesticide runoff from paddy fields to rural rivers.
    Numabe A; Nagahora S
    Water Sci Technol; 2006; 53(2):139-46. PubMed ID: 16594332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of uncertainties in agricultural working schedules and Monte-Carlo evaluation of the model input in basin-scale runoff model analysis of herbicides.
    Matsui Y; Inoue T; Matsushita T; Yamada T; Yamamoto M; Sumigama Y
    Water Sci Technol; 2005; 51(3-4):329-37. PubMed ID: 15850206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration and validation of a dynamic water model in agricultural scenarios.
    Infantino A; Pereira T; Ferrari C; Cerejeira MJ; Di Guardo A
    Chemosphere; 2008 Jan; 70(7):1298-308. PubMed ID: 17765289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on pesticide runoff from paddy fields to a river in rural region--2: development and application of a mathematical model.
    Nakano Y; Yoshida T; Inoue T
    Water Res; 2004 Jul; 38(13):3023-30. PubMed ID: 15261540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the RICEWQ-VADOFT model for simulating the environmental fate of pretilachlor in rice paddies.
    Karpouzas DG; Ferrero A; Vidotto F; Capri E
    Environ Toxicol Chem; 2005 Apr; 24(4):1007-17. PubMed ID: 15839578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling complexity in simulating pesticide fate in a rice paddy.
    Luo Y; Spurlock F; Gill S; Goh KS
    Water Res; 2012 Dec; 46(19):6300-8. PubMed ID: 23021519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scenario-based simulation of runoff-related pesticide entries into small streams on a landscape level.
    Probst M; Berenzen N; Lentzen-Godding A; Schulz R
    Ecotoxicol Environ Saf; 2005 Oct; 62(2):145-59. PubMed ID: 15953635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Runoff characteristics of particulate pesticides in a river from paddy fields.
    Inoue T; Ebise S; Numabe A; Nagafuchi O; Matsui Y
    Water Sci Technol; 2002; 45(9):121-6. PubMed ID: 12079093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative ecological risks of pesticides used in plantation production of papaya: application of the SYNOPS indicator.
    Hernández-Hernández CN; Valle-Mora J; Santiesteban-Hernández A; Bello-Mendoza R
    Sci Total Environ; 2007 Aug; 381(1-3):112-25. PubMed ID: 17482661
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pesticides in the Rhône river delta (France): basic data for a field-based exposure assessment.
    Comoretto L; Arfib B; Chiron S
    Sci Total Environ; 2007 Jul; 380(1-3):124-32. PubMed ID: 17324449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Runoff characteristics of pesticides from paddy fields and reduction of risk to the aquatic environment.
    Ebise S; Inoue T
    Water Sci Technol; 2002; 45(9):127-31. PubMed ID: 12079094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass loading and partitioning of dioxins in irrigation runoff from Japanese paddy fields: combination usage of the CALUX assay with HRGC/HRMS.
    Kanematsu M; Shimizu Y; Sato K; Kim S; Suzuki T; Park B; Saino R; Nakamura M
    Chemosphere; 2009 Aug; 76(6):860-6. PubMed ID: 19443016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Runoff of pesticides from rice fields in the Ile de Camargue (Rhône river delta, France): field study and modeling.
    Comoretto L; Arfib B; Talva R; Chauvelon P; Pichaud M; Chiron S; Höhener P
    Environ Pollut; 2008 Feb; 151(3):486-93. PubMed ID: 17562351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: a case study of the Sakura River watershed.
    Tu LH; Boulange J; Iwafune T; Yadav IC; Watanabe H
    Pest Manag Sci; 2018 Nov; 74(11):2520-2529. PubMed ID: 29656603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.