These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 20954393)

  • 1. [Progress on biogas technology and engineering].
    Liu X; Yuan Y; Yan Z
    Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):924-30. PubMed ID: 20954393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of biogas from solid organic wastes through anaerobic digestion: a review.
    Muhammad Nasir I; Mohd Ghazi TI; Omar R
    Appl Microbiol Biotechnol; 2012 Jul; 95(2):321-9. PubMed ID: 22622840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and energetic use of biogas from energy crops and wastes in Germany.
    Weiland P
    Appl Biochem Biotechnol; 2003; 109(1-3):263-74. PubMed ID: 12794299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The anaerobic digestion of solid organic waste.
    Khalid A; Arshad M; Anjum M; Mahmood T; Dawson L
    Waste Manag; 2011 Aug; 31(8):1737-44. PubMed ID: 21530224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme research and applications in biotechnological intensification of biogas production.
    Parawira W
    Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy potential of anaerobic digestion of solid wastes generated in the Russian Federation.
    Kalyuzhnyi SV
    Water Sci Technol; 2008; 58(9):1743-8. PubMed ID: 19029714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: recovering a wasted methane potential and enhancing the biogas yield.
    Martín-González L; Colturato LF; Font X; Vicent T
    Waste Manag; 2010 Oct; 30(10):1854-9. PubMed ID: 20400285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing the environmental burdens of anaerobic digestion in comparison to alternative options for managing the biodegradable fraction of municipal solid wastes.
    Haight M
    Water Sci Technol; 2005; 52(1-2):553-9. PubMed ID: 16180477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimization of greenhouse gas emission by application of anaerobic digestion process with biogas utilization.
    Yasui H; Komatsu K; Goel R; Matsuhashi R; Ohashi A; Harada H
    Water Sci Technol; 2005; 52(1-2):545-52. PubMed ID: 16180476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogas production by anaerobic co-digestion of cattle slurry and cheese whey.
    Comino E; Riggio VA; Rosso M
    Bioresour Technol; 2012 Jun; 114():46-53. PubMed ID: 22444637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogas Production: Microbiology and Technology.
    Schnürer A
    Adv Biochem Eng Biotechnol; 2016; 156():195-234. PubMed ID: 27432246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.
    Schievano A; D'Imporzano G; Adani F
    J Environ Manage; 2009 Jun; 90(8):2537-41. PubMed ID: 19254824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full scale experience with the BIOCEL process.
    ten Brummeler E
    Water Sci Technol; 2000; 41(3):299-304. PubMed ID: 11382005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogas production: current state and perspectives.
    Weiland P
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):849-60. PubMed ID: 19777226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal hydrolysis (TDH) as a pretreatment method for the digestion of organic waste.
    Schieder D; Schneider R; Bischof F
    Water Sci Technol; 2000; 41(3):181-7. PubMed ID: 11381990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiological fermentation of lignocellulosic biomass: current state and prospects of mathematical modeling.
    Lübken M; Gehring T; Wichern M
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1643-52. PubMed ID: 19960191
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic sustainability for integrated biomethanation of sugar mill waste and municipal sewage.
    Saravanane R; Sivasankaran MA; Sundararaman S; Sivacoumar R
    J Environ Sci Eng; 2004 Apr; 46(2):116-22. PubMed ID: 16649602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.
    Wang G; Gavala HN; Skiadas IV; Ahring BK
    Waste Manag; 2009 Nov; 29(11):2830-5. PubMed ID: 19666217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.