BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 20954726)

  • 1. Degradable nitric oxide-releasing biomaterials via post-polymerization functionalization of cross-linked polyesters.
    Coneski PN; Rao KS; Schoenfisch MH
    Biomacromolecules; 2010 Nov; 11(11):3208-15. PubMed ID: 20954726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial nitric oxide-releasing polyester for the coating of blood-contacting artificial materials.
    Seabra AB; Martins D; Simões MM; da Silva R; Brocchi M; de Oliveira MG
    Artif Organs; 2010 Jul; 34(7):E204-14. PubMed ID: 20497163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradable crosslinked polyesters derived from thiomalic acid and
    Yapor JP; Neufeld BH; Tapia JB; Reynolds MM
    J Mater Chem B; 2018 Jun; 6(24):4071-4081. PubMed ID: 31372219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biodegradable thermoset polymer made by esterification of citric acid and glycerol.
    Halpern JM; Urbanski R; Weinstock AK; Iwig DF; Mathers RT; von Recum HA
    J Biomed Mater Res A; 2014 May; 102(5):1467-77. PubMed ID: 23737239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibacterial properties of nitric oxide-releasing sol-gels.
    Nablo BJ; Schoenfisch MH
    J Biomed Mater Res A; 2003 Dec; 67(4):1276-83. PubMed ID: 14624514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.
    Korley JN; Yazdi S; McHugh K; Kirk J; Anderson J; Putnam D
    Biomaterials; 2016 Aug; 98():41-52. PubMed ID: 27179432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinitiated crosslinked degradable copolymer networks for tissue engineering applications.
    Davis KA; Burdick JA; Anseth KS
    Biomaterials; 2003 Jun; 24(14):2485-95. PubMed ID: 12695075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial hydantoin-containing polyesters.
    Tan L; Maji S; Mattheis C; Zheng M; Chen Y; Caballero-Díaz E; Gil PR; Parak WJ; Greiner A; Agarwal S
    Macromol Biosci; 2012 Aug; 12(8):1068-76. PubMed ID: 22730259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds.
    Atzet S; Curtin S; Trinh P; Bryant S; Ratner B
    Biomacromolecules; 2008 Dec; 9(12):3370-7. PubMed ID: 19061434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep eutectic solvent-assisted synthesis of biodegradable polyesters with antibacterial properties.
    García-Argüelles S; Serrano MC; Gutiérrez MC; Ferrer ML; Yuste L; Rojo F; del Monte F
    Langmuir; 2013 Jul; 29(30):9525-34. PubMed ID: 23808373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradable polyesters through chain linking for packaging and biomedical applications.
    Seppälä JV; Helminen AO; Korhonen H
    Macromol Biosci; 2004 Mar; 4(3):208-17. PubMed ID: 15468210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do bioresorbable polyesters have antimicrobial properties?
    Gritsch L; Lovell C; Goldmann WH; Boccaccini AR
    J Mater Sci Mater Med; 2018 Jan; 29(2):18. PubMed ID: 29340853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide-releasing S-nitrosothiol-modified xerogels.
    Riccio DA; Dobmeier KP; Hetrick EM; Privett BJ; Paul HS; Schoenfisch MH
    Biomaterials; 2009 Sep; 30(27):4494-502. PubMed ID: 19501904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study.
    Chandorkar Y; Bhagat RK; Madras G; Basu B
    Biomacromolecules; 2014 Mar; 15(3):863-75. PubMed ID: 24517727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catechin-Modified Polylactide Stereocomplex at Chain End Improved Antibiobacterial Property.
    Ajiro H; Ito S; Kan K; Akashi M
    Macromol Biosci; 2016 May; 16(5):694-704. PubMed ID: 26789009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric Oxide-Releasing Cyclodextrins.
    Jin H; Yang L; Ahonen MJR; Schoenfisch MH
    J Am Chem Soc; 2018 Oct; 140(43):14178-14184. PubMed ID: 30234298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications.
    Hickey DJ; Muthusamy D; Webster TJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3136-3147. PubMed ID: 28782240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution.
    Friess F; Wischke C; Behl M; Lendlein A
    J Appl Biomater Funct Mater; 2012; 10(3):273-9. PubMed ID: 23242870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide-releasing poly(ε-caprolactone)/S-nitrosylated keratin biocomposite scaffolds for potential small-diameter vascular grafts.
    Li P; Jin D; Dou J; Wang L; Wang Y; Jin X; Han X; Kang IK; Yuan J; Shen J; Yin M
    Int J Biol Macromol; 2021 Oct; 189():516-527. PubMed ID: 34450147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diatom-inspired 2D nitric oxide releasing anti-infective porous nanofrustules.
    Lim HK; Tan SJ; Wu Z; Ong BC; Tan KW; Dong Z; Tay CY
    J Mater Chem B; 2021 Sep; 9(35):7229-7237. PubMed ID: 34031686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.