BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 20954728)

  • 1. Ultrasensitive sensing of Hg(2+) and CH(3)Hg(+) based on the fluorescence quenching of lysozyme type VI-stabilized gold nanoclusters.
    Lin YH; Tseng WL
    Anal Chem; 2010 Nov; 82(22):9194-200. PubMed ID: 20954728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Lysozyme type VI)-stabilized Au8 clusters: synthesis mechanism and application for sensing of glutathione in a single drop of blood.
    Chen TH; Tseng WL
    Small; 2012 Jun; 8(12):1912-9. PubMed ID: 22461355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A label-free method for detecting biological thiols based on blocking of Hg2+-quenching of fluorescent gold nanoclusters.
    Park KS; Kim MI; Woo MA; Park HG
    Biosens Bioelectron; 2013 Jul; 45():65-9. PubMed ID: 23454739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions.
    Xie J; Zheng Y; Ying JY
    Chem Commun (Camb); 2010 Feb; 46(6):961-3. PubMed ID: 20107664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mercury Speciation with Fluorescent Gold Nanocluster as a Probe.
    Yang JY; Yang T; Wang XY; Chen ML; Yu YL; Wang JH
    Anal Chem; 2018 Jun; 90(11):6945-6951. PubMed ID: 29747508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg
    Bhamore JR; Jha S; Basu H; Singhal RK; Murthy ZVP; Kailasa SK
    Anal Bioanal Chem; 2018 Apr; 410(11):2781-2791. PubMed ID: 29480389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg 2+ to gold nanoclusters.
    Dai H; Shi Y; Wang Y; Sun Y; Hu J; Ni P; Li Z
    Biosens Bioelectron; 2014 Mar; 53():76-81. PubMed ID: 24121226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols.
    Chang HC; Chang YF; Fan NC; Ho JA
    ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically modified cellulose strips with pyridoxal conjugated red fluorescent gold nanoclusters for nanomolar detection of mercuric ions.
    Bothra S; Upadhyay Y; Kumar R; Ashok Kumar SK; Sahoo SK
    Biosens Bioelectron; 2017 Apr; 90():329-335. PubMed ID: 27940235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids.
    Li ZY; Wu YT; Tseng WL
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23708-16. PubMed ID: 26443919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-situ synthesis of fluorescent gold nanoclusters with electrospun fibrous membrane and application on Hg (II) sensing.
    Cai Y; Yan L; Liu G; Yuan H; Xiao D
    Biosens Bioelectron; 2013 Mar; 41():875-9. PubMed ID: 23021839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective and sensitive detection of free bilirubin in blood serum using human serum albumin stabilized gold nanoclusters as fluorometric and colorimetric probe.
    Santhosh M; Chinnadayyala SR; Kakoti A; Goswami P
    Biosens Bioelectron; 2014 Sep; 59():370-6. PubMed ID: 24752148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective fluorescent sensors for Hg(2+) based on bovine serum albumin-capped gold nanoclusters.
    Hu D; Sheng Z; Gong P; Zhang P; Cai L
    Analyst; 2010 Jun; 135(6):1411-6. PubMed ID: 20419194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple, Selective and Sensitive Determination of CH₃Hg⁺ Using Gold Nanocluster.
    Chen X; Zhao J; Cong W; Li X; Fan H; Sun J; Lin J; Li B; Gao Y; Qin C; Li YF
    J Nanosci Nanotechnol; 2016 Jan; 16(1):772-6. PubMed ID: 27398521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles.
    Tseng CW; Chang HY; Chang JY; Huang CC
    Nanoscale; 2012 Nov; 4(21):6823-30. PubMed ID: 23011048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of two-sized clusters for ratiometric sensing of Hg2+.
    Chen TH; Lu CY; Tseng WL
    Talanta; 2013 Dec; 117():258-62. PubMed ID: 24209338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters.
    Tan Z; Xu H; Li G; Yang X; Choi MM
    Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():615-20. PubMed ID: 25985125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(adenine)-templated fluorescent Au nanoclusters for the rapid and sensitive detection of melamine.
    Wang HB; Bai HY; Mao AL; Gan T; Liu YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():375-381. PubMed ID: 31059889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copper ions.
    Cao D; Fan J; Qiu J; Tu Y; Yan J
    Biosens Bioelectron; 2013 Apr; 42():47-50. PubMed ID: 23202329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.
    Qi YX; Zhang M; Zhu A; Shi G
    Analyst; 2015 Aug; 140(16):5656-61. PubMed ID: 26140286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.