BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20955009)

  • 1. Dynamic lipidomic insights into the adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Zhou X; Zhou J; Tian H; Yuan Y
    OMICS; 2010 Oct; 14(5):563-74. PubMed ID: 20955009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipidome profiling of Saccharomyces cerevisiae reveals pitching rate-dependent fermentative performance.
    Tian HC; Zhou J; Qiao B; Liu Y; Xia JM; Yuan YJ
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1507-16. PubMed ID: 20445974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of major phospholipid species and ergosterol in fermenting industrial yeast strains using atmospheric pressure ionization ion-trap mass spectrometry.
    Henderson CM; Lozada-Contreras M; Naravane Y; Longo ML; Block DE
    J Agric Food Chem; 2011 Dec; 59(24):12761-70. PubMed ID: 21995817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane.
    Schneiter R; Brügger B; Sandhoff R; Zellnig G; Leber A; Lampl M; Athenstaedt K; Hrastnik C; Eder S; Daum G; Paltauf F; Wieland FT; Kohlwein SD
    J Cell Biol; 1999 Aug; 146(4):741-54. PubMed ID: 10459010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS; Zhou X; Ding MZ; Yuan YJ
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):909-23. PubMed ID: 19488749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative lipidomic profiling of xylose-metabolizing S. cerevisiae and its parental strain in different media reveals correlations between membrane lipids and fermentation capacity.
    Xia J; Jones AD; Lau MW; Yuan YJ; Dale BE; Balan V
    Biotechnol Bioeng; 2011 Jan; 108(1):12-21. PubMed ID: 20803565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of lipidomic platform and phosphatidylcholine retention time index for lipid profiling of rosuvastatin treated human plasma.
    Choi JM; Kim TE; Cho JY; Lee HJ; Jung BH
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Jan; 944():157-65. PubMed ID: 24316528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote.
    Boumann HA; Gubbens J; Koorengevel MC; Oh CS; Martin CE; Heck AJ; Patton-Vogt J; Henry SA; de Kruijff B; de Kroon AI
    Mol Biol Cell; 2006 Feb; 17(2):1006-17. PubMed ID: 16339082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of Saccharomyces cerevisiae cell membrane components and promotion to ethanol tolerance during the bioethanol fermentation.
    Dong SJ; Yi CF; Li H
    Int J Biochem Cell Biol; 2015 Dec; 69():196-203. PubMed ID: 26515124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The two biosynthetic routes leading to phosphatidylcholine in yeast produce different sets of molecular species. Evidence for lipid remodeling.
    Boumann HA; Damen MJ; Versluis C; Heck AJ; de Kruijff B; de Kroon AI
    Biochemistry; 2003 Mar; 42(10):3054-9. PubMed ID: 12627972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains.
    Henderson CM; Lozada-Contreras M; Jiranek V; Longo ML; Block DE
    Appl Environ Microbiol; 2013 Jan; 79(1):91-104. PubMed ID: 23064336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fermentation temperature modulates phosphatidylethanolamine and phosphatidylinositol levels in the cell membrane of Saccharomyces cerevisiae.
    Henderson CM; Zeno WF; Lerno LA; Longo ML; Block DE
    Appl Environ Microbiol; 2013 Sep; 79(17):5345-56. PubMed ID: 23811519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated phospholipidomics and transcriptomics analysis of Saccharomyces cerevisiae with enhanced tolerance to a mixture of acetic acid, furfural, and phenol.
    Yang J; Ding MZ; Li BZ; Liu ZL; Wang X; Yuan YJ
    OMICS; 2012; 16(7-8):374-86. PubMed ID: 22734833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of plasma membrane ergosterol of Saccharomyces cerevisiae by direct-injection atmospheric pressure chemical ionization/tandem mass spectrometry.
    Toh TH; Prior BA; van der Merwe MJ
    Anal Biochem; 2001 Jan; 288(1):44-51. PubMed ID: 11141305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.
    Flis VV; Fankl A; Ramprecht C; Zellnig G; Leitner E; Hermetter A; Daum G
    PLoS One; 2015; 10(8):e0135084. PubMed ID: 26241051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative lipidomic insights in the inhibitory response of Pichia stipitis to vanillin, 5-hydroxymethylfurfural, and acetic acid.
    Zhu Y; Wu L; Zhu J; Xu Y; Yong Q; Yu S
    Biochem Biophys Res Commun; 2018 Feb; 497(1):7-12. PubMed ID: 29410261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Markers of monocyte activation revealed by lipidomic profiling of arachidonic acid-containing phospholipids.
    Balgoma D; Astudillo AM; Pérez-Chacón G; Montero O; Balboa MA; Balsinde J
    J Immunol; 2010 Apr; 184(7):3857-65. PubMed ID: 20181887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outline of the biosynthesis and regulation of ergosterol in yeast.
    Liu JF; Xia JJ; Nie KL; Wang F; Deng L
    World J Microbiol Biotechnol; 2019 Jun; 35(7):98. PubMed ID: 31222401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of major membrane lipid synthesis and its effects on sporulation in Saccharomyces cerevisiae.
    Deng L; Nagasawa J; Ono Y; Ishikawa Y; Kakihara T; Fukuda R; Ohta A
    Biosci Biotechnol Biochem; 2008 Sep; 72(9):2362-8. PubMed ID: 18776695
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of ergosterol in tolerance to vanillin, a potential inhibitor of bioethanol fermentation, in Saccharomyces cerevisiae.
    Endo A; Nakamura T; Shima J
    FEMS Microbiol Lett; 2009 Oct; 299(1):95-9. PubMed ID: 19686341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.