These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 20955197)

  • 1. Complex evolutionary transitions and the significance of c(3)-c(4) intermediate forms of photosynthesis in Molluginaceae.
    Christin PA; Sage TL; Edwards EJ; Ogburn RM; Khoshravesh R; Sage RF
    Evolution; 2011 Mar; 65(3):643-60. PubMed ID: 20955197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phylogenomics of C(4) photosynthesis in sedges (Cyperaceae): multiple appearances and genetic convergence.
    Besnard G; Muasya AM; Russier F; Roalson EH; Salamin N; Christin PA
    Mol Biol Evol; 2009 Aug; 26(8):1909-19. PubMed ID: 19461115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny of Flaveria (Asteraceae) and inference of C4 photosynthesis evolution.
    McKown AD; Moncalvo JM; Dengler NG
    Am J Bot; 2005 Nov; 92(11):1911-28. PubMed ID: 21646108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic relationships among Molluginaceae inferred from a molecular phylogenetic analysis of the matK gene.
    Ali MA; Lee J; Al-Hemaid F
    Genet Mol Res; 2017 Jun; 16(2):. PubMed ID: 28671248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From proto-Kranz to C4 Kranz: building the bridge to C4 photosynthesis.
    Sage RF; Khoshravesh R; Sage TL
    J Exp Bot; 2014 Jul; 65(13):3341-56. PubMed ID: 24803502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repeated origin of three-dimensional leaf venation releases constraints on the evolution of succulence in plants.
    Ogburn RM; Edwards EJ
    Curr Biol; 2013 Apr; 23(8):722-6. PubMed ID: 23583553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of C(4) phosphoenolpyruvate carboxykinase in grasses, from genotype to phenotype.
    Christin PA; Petitpierre B; Salamin N; Büchi L; Besnard G
    Mol Biol Evol; 2009 Feb; 26(2):357-65. PubMed ID: 18988688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two independent C4 origins in Aristidoideae (Poaceae) revealed by the recruitment of distinct phosphoenolpyruvate carboxylase genes.
    Christin PA; Besnard G
    Am J Bot; 2009 Dec; 96(12):2234-9. PubMed ID: 21622339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Key innovations in the evolution of Kranz anatomy and C4 vein pattern in Flaveria (Asteraceae).
    McKown AD; Dengler NG
    Am J Bot; 2007 Mar; 94(3):382-99. PubMed ID: 21636408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population genetics, pleiotropy, and the preferential fixation of mutations during adaptive evolution.
    Streisfeld MA; Rausher MD
    Evolution; 2011 Mar; 65(3):629-42. PubMed ID: 21054357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C4 Photosynthesis evolved in grasses via parallel adaptive genetic changes.
    Christin PA; Salamin N; Savolainen V; Duvall MR; Besnard G
    Curr Biol; 2007 Jul; 17(14):1241-7. PubMed ID: 17614282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can phylogenetics identify C(4) origins and reversals?
    Christin PA; Freckleton RP; Osborne CP
    Trends Ecol Evol; 2010 Jul; 25(7):403-9. PubMed ID: 20605250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoenolpyruvate carboxylase genes in C3, crassulacean acid metabolism (CAM) and C3/CAM intermediate species of the genus Clusia: rapid reversible C3/CAM switches are based on the C3 housekeeping gene.
    Vaasen A; Begerow D; Hampp R
    Plant Cell Environ; 2006 Dec; 29(12):2113-23. PubMed ID: 17081245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic enablers underlying the clustered evolutionary origins of C4 photosynthesis in angiosperms.
    Christin PA; Arakaki M; Osborne CP; Edwards EJ
    Mol Biol Evol; 2015 Apr; 32(4):846-58. PubMed ID: 25582594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomical enablers and the evolution of C4 photosynthesis in grasses.
    Christin PA; Osborne CP; Chatelet DS; Columbus JT; Besnard G; Hodkinson TR; Garrison LM; Vorontsova MS; Edwards EJ
    Proc Natl Acad Sci U S A; 2013 Jan; 110(4):1381-6. PubMed ID: 23267116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contingent predictability in evolution: key traits and diversification.
    de Queiroz A
    Syst Biol; 2002 Dec; 51(6):917-29. PubMed ID: 12554458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary physiology: the extent of C4 and CAM photosynthesis in the genera Anacampseros and Grahamia of the Portulacaceae.
    Guralnick LJ; Cline A; Smith M; Sage RF
    J Exp Bot; 2008; 59(7):1735-42. PubMed ID: 18440927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple photosynthetic transitions, polyploidy, and lateral gene transfer in the grass subtribe Neurachninae.
    Christin PA; Wallace MJ; Clayton H; Edwards EJ; Furbank RT; Hattersley PW; Sage RF; Macfarlane TD; Ludwig M
    J Exp Bot; 2012 Oct; 63(17):6297-308. PubMed ID: 23077201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compartmentation of photosynthesis in cells and tissues of C(4) plants.
    Edwards GE; Franceschi VR; Ku MS; Voznesenskaya EV; Pyankov VI; Andreo CS
    J Exp Bot; 2001 Apr; 52(356):577-90. PubMed ID: 11373306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.