BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20955577)

  • 1. Fragile X astrocytes induce developmental delays in dendrite maturation and synaptic protein expression.
    Jacobs S; Nathwani M; Doering LC
    BMC Neurosci; 2010 Oct; 11():132. PubMed ID: 20955577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hippocampal neuronal subtypes develop abnormal dendritic arbors in the presence of Fragile X astrocytes.
    Jacobs S; Cheng C; Doering LC
    Neuroscience; 2016 Jun; 324():202-17. PubMed ID: 26968765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Astrocytes prevent abnormal neuronal development in the fragile x mouse.
    Jacobs S; Doering LC
    J Neurosci; 2010 Mar; 30(12):4508-14. PubMed ID: 20335488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome.
    Jawaid S; Kidd GJ; Wang J; Swetlik C; Dutta R; Trapp BD
    Glia; 2018 Apr; 66(4):789-800. PubMed ID: 29274095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model.
    Cheng C; Lau SK; Doering LC
    Mol Brain; 2016 Aug; 9(1):74. PubMed ID: 27485117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome.
    Muddashetty RS; Kelić S; Gross C; Xu M; Bassell GJ
    J Neurosci; 2007 May; 27(20):5338-48. PubMed ID: 17507556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses.
    Antar LN; Li C; Zhang H; Carroll RC; Bassell GJ
    Mol Cell Neurosci; 2006; 32(1-2):37-48. PubMed ID: 16631377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of autophagy rescues synaptic and cognitive deficits in fragile X mice.
    Yan J; Porch MW; Court-Vazquez B; Bennett MVL; Zukin RS
    Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9707-E9716. PubMed ID: 30242133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome.
    Yang Q; Feng B; Zhang K; Guo YY; Liu SB; Wu YM; Li XQ; Zhao MG
    PLoS Genet; 2012; 8(12):e1003172. PubMed ID: 23300470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modest alterations in patterns of motor neuron dendrite morphology in the Fmr1 knockout mouse model for fragile X.
    Thomas CC; Combe CL; Dyar KA; Inglis FM
    Int J Dev Neurosci; 2008 Nov; 26(7):805-11. PubMed ID: 18638539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomics, ultrastructure, and physiology of hippocampal synapses in a fragile X syndrome mouse model reveal presynaptic phenotype.
    Klemmer P; Meredith RM; Holmgren CD; Klychnikov OI; Stahl-Zeng J; Loos M; van der Schors RC; Wortel J; de Wit H; Spijker S; Rotaru DC; Mansvelder HD; Smit AB; Li KW
    J Biol Chem; 2011 Jul; 286(29):25495-504. PubMed ID: 21596744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fragile X mental retardation protein regulates the levels of scaffold proteins and glutamate receptors in postsynaptic densities.
    Schütt J; Falley K; Richter D; Kreienkamp HJ; Kindler S
    J Biol Chem; 2009 Sep; 284(38):25479-87. PubMed ID: 19640847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.
    Sun MK; Hongpaisan J; Alkon DL
    J Pharmacol Exp Ther; 2016 May; 357(2):300-10. PubMed ID: 26941170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses.
    Antar LN; Afroz R; Dictenberg JB; Carroll RC; Bassell GJ
    J Neurosci; 2004 Mar; 24(11):2648-55. PubMed ID: 15028757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95.
    Tsai NP; Wilkerson JR; Guo W; Maksimova MA; DeMartino GN; Cowan CW; Huber KM
    Cell; 2012 Dec; 151(7):1581-94. PubMed ID: 23260144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FMRP-dependent Mdm2 dephosphorylation is required for MEF2-induced synapse elimination.
    Tsai NP; Wilkerson JR; Guo W; Huber KM
    Hum Mol Genet; 2017 Jan; 26(2):293-304. PubMed ID: 28025327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Molecule Imaging of PSD-95 mRNA Translation in Dendrites and Its Dysregulation in a Mouse Model of Fragile X Syndrome.
    Ifrim MF; Williams KR; Bassell GJ
    J Neurosci; 2015 May; 35(18):7116-30. PubMed ID: 25948262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual-spatial learning impairments are associated with hippocampal PSD-95 protein dysregulation in a mouse model of fragile X syndrome.
    Gandhi RM; Kogan CS; Messier C; Macleod LS
    Neuroreport; 2014 Mar; 25(4):255-61. PubMed ID: 24323121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytic Contributions to Synaptic and Learning Abnormalities in a Mouse Model of Fragile X Syndrome.
    Hodges JL; Yu X; Gilmore A; Bennett H; Tjia M; Perna JF; Chen CC; Li X; Lu J; Zuo Y
    Biol Psychiatry; 2017 Jul; 82(2):139-149. PubMed ID: 27865451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of
    Rotschafer SE; Cramer KS
    eNeuro; 2017; 4(6):. PubMed ID: 29291238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.