These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20956031)

  • 41. Biomechanical comparison of traditional and minimally invasive intradural tumor exposures using finite element analysis.
    Ogden AT; Bresnahan L; Smith JS; Natarajan R; Fessler RG
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):143-7. PubMed ID: 19121823
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Sensomotor function while wearing lumbar support ortheses].
    Pfeifer K; Vogt L; Klingler J; Portscher M; Banzer W
    Z Orthop Ihre Grenzgeb; 2001; 139(1):12-8. PubMed ID: 11253516
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.
    Ezquerro F; Simón A; Prado M; Pérez A
    Med Eng Phys; 2004 Jan; 26(1):11-22. PubMed ID: 14644594
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct real-time measurement of in vivo forces in the lumbar spine.
    Ledet EH; Tymeson MP; DiRisio DJ; Cohen B; Uhl RL
    Spine J; 2005; 5(1):85-94. PubMed ID: 15653089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Muscle force evaluation and the role of posture in human lumbar spine under compression.
    Shirazi-Adl A; Sadouk S; Parnianpour M; Pop D; El-Rich M
    Eur Spine J; 2002 Dec; 11(6):519-26. PubMed ID: 12522708
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Normal functional range of motion of the lumbar spine during 15 activities of daily living.
    Bible JE; Biswas D; Miller CP; Whang PG; Grauer JN
    J Spinal Disord Tech; 2010 Apr; 23(2):106-12. PubMed ID: 20065869
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography.
    Hughes RE; Chaffin DB; Lavender SA; Andersson GB
    J Orthop Res; 1994 Sep; 12(5):689-98. PubMed ID: 7931786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.
    Little JP; Adam CJ
    Spine (Phila Pa 1976); 2009 Jan; 34(2):E76-82. PubMed ID: 19139657
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical assessment of minimally invasive decompression for lumbar spinal canal stenosis: a cadaver study.
    Hamasaki T; Tanaka N; Kim J; Okada M; Ochi M; Hutton WC
    J Spinal Disord Tech; 2009 Oct; 22(7):486-91. PubMed ID: 20075811
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Accuracy of single-time, multilevel registration in image-guided spinal surgery.
    Papadopoulos EC; Girardi FP; Sama A; Sandhu HS; Cammisa FP
    Spine J; 2005; 5(3):263-7; discussion 268. PubMed ID: 15863081
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discrepancies in anthropometric parameters between different models affect intervertebral rotations when loading finite element models with muscle forces from inverse static analyses.
    Zhu R; Rohlmann A
    Biomed Tech (Berl); 2014 Jun; 59(3):197-202. PubMed ID: 24515995
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A standardized representation of spinal quality of motion.
    Zirbel SA; Stolworthy DK; Howell LL; Bowden AE
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1168-75. PubMed ID: 25500861
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Cervico-Thoraco-Lumbar Multibody Dynamic Model for the Estimation of Joint Loads and Muscle Forces.
    Khurelbaatar T; Kim K; Hyuk Kim Y
    J Biomech Eng; 2015 Nov; 137(11):111001. PubMed ID: 26292160
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions.
    Granata KP; Marras WS
    J Biomech; 1993 Dec; 26(12):1429-38. PubMed ID: 8308047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading.
    Ignasiak D; Dendorfer S; Ferguson SJ
    J Biomech; 2016 Apr; 49(6):959-966. PubMed ID: 26684431
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differences in lumbar spine load due to posture and upper limb external load.
    Kamińska J; Roman-Liu D; Zagrajek T; Borkowski P
    Int J Occup Saf Ergon; 2010; 16(4):421-30. PubMed ID: 21144261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of nucleotomy on facet joint loading in the porcine lumbar spine.
    Ivicsics MF; Bishop NE; Sellenschloh K; Berteau JP; Morlock MM; Huber G
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():222-3. PubMed ID: 23923917
    [No Abstract]   [Full Text] [Related]  

  • 58. Estimation of loads on human lumbar spine: A review of in vivo and computational model studies.
    Dreischarf M; Shirazi-Adl A; Arjmand N; Rohlmann A; Schmidt H
    J Biomech; 2016 Apr; 49(6):833-845. PubMed ID: 26873281
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rigid thorax assumption affects model loading predictions at the upper but not lower lumbar levels.
    Ignasiak D; Ferguson SJ; Arjmand N
    J Biomech; 2016 Sep; 49(13):3074-3078. PubMed ID: 27515441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biomechanics of the spine. Part I: spinal stability.
    Izzo R; Guarnieri G; Guglielmi G; Muto M
    Eur J Radiol; 2013 Jan; 82(1):118-26. PubMed ID: 23088879
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.