These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20956282)

  • 1. Probability of bystander effect induced by alpha-particles emitted by radon progeny using the analytical model of tracheobronchial tree.
    Jovanović B; Nikezić D
    Radiat Prot Dosimetry; 2010 Dec; 142(2-4):168-73. PubMed ID: 20956282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha hit frequency due to radon decay products in human lung cells.
    Nikezic D; Yu KN
    Int J Radiat Biol; 2001 May; 77(5):559-65. PubMed ID: 11382334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absorbed fraction of radon progeny in human bronchial airways with bifurcation geometry.
    Nikezic D; Novakovic B; Yu KN
    Int J Radiat Biol; 2003 Mar; 79(3):175-80. PubMed ID: 12745882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha-particle lineal energy spectra for the human lung.
    Nikezic D; Yu KN
    Int J Radiat Biol; 2002 Jul; 78(7):605-9. PubMed ID: 12079539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of lung cancer risk for radon exposures based on cellular alpha particle hits.
    Truta-Popa LA; Hofmann W; Cosma C
    Radiat Prot Dosimetry; 2011 May; 145(2-3):218-23. PubMed ID: 21471125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorbed dose in target cell nuclei and dose conversion coefficient of radon progeny in the human lung.
    Nikezic D; Lau BM; Stevanovic N; Yu KN
    J Environ Radioact; 2006; 89(1):18-29. PubMed ID: 16678946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-modelling of radon-induced cellular radiobiological effects in bronchial airway bifurcations: direct versus bystander effects.
    Szőke I; Farkas A; Balásházy I; Hofmann W; Madas BG; Szőke R
    Int J Radiat Biol; 2012 Jun; 88(6):477-92. PubMed ID: 22420832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alpha-hit, cellular dose, cell transformation and inactivation probability distributions of radon progenies in the bronchial epithelium.
    Szoke I; Balásházy I; Farkas A; Hofmann W; Szoke R; Fakir H; Kis E
    Radiat Prot Dosimetry; 2006; 122(1-4):540-2. PubMed ID: 17145731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of alpha particles at the cellular level--implications for the radiation weighting factor.
    Hofmann W; Fakir H; Aubineau-Laniece I; Pihet P
    Radiat Prot Dosimetry; 2004; 112(4):493-500. PubMed ID: 15623884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do low dose-rate bystander effects influence domestic radon risks?
    Brenner DJ; Sachs RK
    Int J Radiat Biol; 2002 Jul; 78(7):593-604. PubMed ID: 12079538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of radiation damage to lung cells after exposure to radon decay products.
    Breier R; Böhm R; Kopáni M
    Neuro Endocrinol Lett; 2006 Dec; 27 Suppl 2():86-90. PubMed ID: 17159787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dosimetry of a 238Pu-based alpha-particle irradiator and its biological application in a study of the bystander effect.
    Dahle J; Kalanxhi E; Tisnek N
    Anticancer Res; 2011 Jun; 31(6):2113-20. PubMed ID: 21737630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A composite microdose Adaptive Response (AR) and Bystander Effect (BE) model-application to low LET and high LET AR and BE data.
    Leonard BE
    Int J Radiat Biol; 2008 Aug; 84(8):681-701. PubMed ID: 18661382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The range of the bystander effect signal in three-dimensional tissue and estimation of the range in human lung tissue at low radon levels.
    Leonard BE
    Radiat Res; 2009 Mar; 171(3):374-8. PubMed ID: 19267565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic aspects of primary cellular consequences of radon inhalation.
    Szoke I; Farkas A; Balásházy I; Hofmann W
    Radiat Res; 2009 Jan; 171(1):96-106. PubMed ID: 19138049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters.
    Harrison J
    J Radiol Prot; 2009 Jun; 29(2A):A81-A105. PubMed ID: 19454809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical model of the radiation-induced bystander effect.
    Nikjoo H; Khvostunov IK
    Int J Radiat Biol; 2003 Jan; 79(1):43-52. PubMed ID: 12556330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Radon exposure of the skin: I. Biological effects.
    Charles MW
    J Radiol Prot; 2007 Sep; 27(3):231-52. PubMed ID: 17768326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro exposure of mammalian cells to radon: dosimetric considerations.
    Jostes RF; Hui TE; James AC; Cross FT; Schwartz JL; Rotmensch J; Atcher RW; Evans HH; Mencl J; Bakale G
    Radiat Res; 1991 Aug; 127(2):211-9. PubMed ID: 1947006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effect of non-uniform radon progeny activities on transformation frequencies in human bronchial airways.
    Fakir H; Hofmann W; Aubineau-Laniece I
    Radiat Prot Dosimetry; 2006; 121(3):221-35. PubMed ID: 16682395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.