These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20957079)

  • 1. 2D Quantitative structure-property relationship study of mycotoxins by multiple linear regression and support vector machine.
    Khosrokhavar R; Ghasemi JB; Shiri F
    Int J Mol Sci; 2010 Aug; 11(9):3052-68. PubMed ID: 20957079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative structure-property relationship modelling of the degradability rate constant of alkenes by OH radicals in atmosphere.
    Fatemi MH; Baher E
    SAR QSAR Environ Res; 2009; 20(1-2):77-90. PubMed ID: 19343584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a support vector machine based QSPR model for prediction of half-life of some herbicides.
    Samghani K; HosseinFatemi M
    Ecotoxicol Environ Saf; 2016 Jul; 129():10-5. PubMed ID: 26970881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Simple, Robust and Efficient Computational Method for n-Octanol/Water Partition Coefficients of Substituted Aromatic Drugs.
    Bahmani A; Saaidpour S; Rostami A
    Sci Rep; 2017 Jul; 7(1):5760. PubMed ID: 28720783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
    Xu J; Wang L; Wang L; Shen X; Xu W
    J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSPR studies for predicting polarity parameter of organic compounds in methanol using support vector machine and enhanced replacement method.
    Golmohammadi H; Dashtbozorgi Z
    SAR QSAR Environ Res; 2016 Dec; 27(12):977-997. PubMed ID: 27658742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSPR modelling for intrinsic viscosity in polymer-solvent combinations based on density functional theory.
    Wang S; Cheng M; Zhou L; Dai Y; Dang Y; Ji X
    SAR QSAR Environ Res; 2021 May; 32(5):379-393. PubMed ID: 33823697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shuffling cross-validation-bee algorithm as a new descriptor selection method for retention studies of pesticides in biopartitioning micellar chromatography.
    Zarei K; Atabati M; Ahmadi M
    J Environ Sci Health B; 2017 May; 52(5):346-352. PubMed ID: 28277080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of Bovine Serum Albumin-Water Partition Coefficients of a Wide Variety of Neutral Organic Compounds by Means of Support Vector Machine.
    Golmohammadi H; Dashtbozorgi Z; Acree WE
    Mol Inform; 2012 Dec; 31(11-12):867-78. PubMed ID: 27476740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.
    Ahmadi S; Ganji S
    Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM).
    Qin Z; Wang M; Yan A
    Bioorg Med Chem Lett; 2017 Jul; 27(13):2931-2938. PubMed ID: 28501513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel QSPR Model for Prediction of Gas to Dimethyl Sulfoxide Solvation Enthalpy of Organic Compounds Based on Support Vector Machine.
    Golmohammadi H; Dashtbozorgi Z; Acree WE
    Mol Inform; 2012 May; 31(5):385-97. PubMed ID: 27477267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative predictions of gas chromatography retention indexes with support vector machines, radial basis neural networks and multiple linear regression.
    Chen HF
    Anal Chim Acta; 2008 Feb; 609(1):24-36. PubMed ID: 18243870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inclusion of molecular descriptors in predictive models improves pesticide soil-air partitioning estimates.
    Islam MN; Huang L; Siciliano SD
    Chemosphere; 2020 Jun; 248():126031. PubMed ID: 32032877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Support vector machines-based quantitative structure-property relationship for the prediction of heat capacity.
    Xue CX; Zhang RS; Liu HX; Liu MC; Hu ZD; Fan BT
    J Chem Inf Comput Sci; 2004; 44(4):1267-74. PubMed ID: 15272834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Research on QSPR for n-octanol-water partition coefficients of organic compounds based on genetic algorithms-support vector machine and genetic algorithms-radial basis function neural networks].
    Qi J; Niu JF; Wang LL
    Huan Jing Ke Xue; 2008 Jan; 29(1):212-8. PubMed ID: 18441943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Six global and local QSPR models of aqueous solubility at pH = 7.4 based on structural similarity and physicochemical descriptors.
    Raevsky OA; Grigorev VY; Polianczyk DE; Raevskaja OE; Dearden JC
    SAR QSAR Environ Res; 2017 Aug; 28(8):661-676. PubMed ID: 28891683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictions of chromatographic retention indices of alkylphenols with support vector machines and multiple linear regression.
    Fatemi MH; Baher E; Ghorbanzade'h M
    J Sep Sci; 2009 Dec; 32(23-24):4133-42. PubMed ID: 19937857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning guided prediction of liquid chromatography-mass spectrometry ionization efficiency for genotoxic impurities in pharmaceutical products.
    Miyamoto K; Mizuno H; Sugiyama E; Toyo'oka T; Todoroki K
    J Pharm Biomed Anal; 2021 Feb; 194():113781. PubMed ID: 33280999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction and application in QSPR of aqueous solubility of sulfur-containing aromatic esters using GA-based MLR with quantum descriptors.
    Yin C; Liu X; Guo W; Lin T; Wang X; Wang L
    Water Res; 2002 Jul; 36(12):2975-82. PubMed ID: 12171394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.