These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20957107)

  • 1. The chemical master equation approach to nonequilibrium steady-state of open biochemical systems: linear single-molecule enzyme kinetics and nonlinear biochemical reaction networks.
    Qian H; Bishop LM
    Int J Mol Sci; 2010 Sep; 11(9):3472-500. PubMed ID: 20957107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond.
    Ge H; Qian H
    J R Soc Interface; 2011 Jan; 8(54):107-16. PubMed ID: 20466813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.
    Grima R
    J Chem Phys; 2010 Jul; 133(3):035101. PubMed ID: 20649359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic bistability and bifurcation in a mesoscopic signaling system with autocatalytic kinase.
    Bishop LM; Qian H
    Biophys J; 2010 Jan; 98(1):1-11. PubMed ID: 20074511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Open-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
    Qian H
    J Phys Chem B; 2006 Aug; 110(31):15063-74. PubMed ID: 16884217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stochastic bifurcation, slow fluctuations, and bistability as an origin of biochemical complexity.
    Qian H; Shi PZ; Xing J
    Phys Chem Chem Phys; 2009 Jun; 11(24):4861-70. PubMed ID: 19506761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic biochemical basis of isogenetic inheritance and canalization: stochasticity, nonlinearity, and emergent landscape.
    Qian H; Ge H
    Mol Cell Biomech; 2012 Mar; 9(1):1-30. PubMed ID: 22428359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noise slows the rate of Michaelis-Menten reactions.
    Van Dyken JD
    J Theor Biol; 2017 Oct; 430():21-31. PubMed ID: 28676416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pumped biochemical reactions, nonequilibrium circulation, and stochastic resonance.
    Qian H; Qian M
    Phys Rev Lett; 2000 Mar; 84(10):2271-4. PubMed ID: 11017261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system.
    Ge H; Qian H
    Phys Rev Lett; 2009 Oct; 103(14):148103. PubMed ID: 19905606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beyond the chemical master equation: Stochastic chemical kinetics coupled with auxiliary processes.
    Lunz D; Batt G; Ruess J; Bonnans JF
    PLoS Comput Biol; 2021 Jul; 17(7):e1009214. PubMed ID: 34319979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule enzymology à la Michaelis-Menten.
    Grima R; Walter NG; Schnell S
    FEBS J; 2014 Jan; 281(2):518-30. PubMed ID: 24289171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters.
    Huang S; Li F; Zhou JX; Qian H
    J R Soc Interface; 2017 May; 14(130):. PubMed ID: 28490602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quasistationary analysis of a stochastic chemical reaction: Keizer's paradox.
    Vellela M; Qian H
    Bull Math Biol; 2007 Jul; 69(5):1727-46. PubMed ID: 17318672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laplacian dynamics on general graphs.
    Mirzaev I; Gunawardena J
    Bull Math Biol; 2013 Nov; 75(11):2118-49. PubMed ID: 24018536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity amplification in the phosphorylation-dephosphorylation cycle: nonequilibrium steady states, chemical master equation, and temporal cooperativity.
    Ge H; Qian M
    J Chem Phys; 2008 Jul; 129(1):015104. PubMed ID: 18624503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastic cooperativity in non-linear dynamics of genetic regulatory networks.
    Rosenfeld S
    Math Biosci; 2007 Nov; 210(1):121-42. PubMed ID: 17617426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.